Spin-Dependent Momentum Conservation of Electron-Phonon Scattering in
Chirality-Induced Spin Selectivity
- URL: http://arxiv.org/abs/2209.05323v1
- Date: Mon, 12 Sep 2022 15:29:00 GMT
- Title: Spin-Dependent Momentum Conservation of Electron-Phonon Scattering in
Chirality-Induced Spin Selectivity
- Authors: Clemens Vittmann, James Lim, Dario Tamascelli, Susana F. Huelga,
Martin B. Plenio
- Abstract summary: We show that spin selectivity can originate from spin-dependent energy and momentum conservation in electron-phonon scattering events.
The degree of spin polarization depends on environmental factors, such as external driving fields, temperatures and phonon relaxation rates.
- Score: 1.3124513975412255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The elucidation of the mechanisms behind chiral-induced spin selectivity
remains an outstanding scientific challenge. Here we consider the role of
delocalised phonon modes in electron transport in chiral structures and
demonstrate that spin selectivity can originate from spin-dependent energy and
momentum conservation in electron-phonon scattering events. While this
mechanism is robust to the specifical nature of the vibrational modes, the
degree of spin polarization depends on environmental factors, such as external
driving fields, temperatures and phonon relaxation rates. This dependence is
used to present experimentally testable predictions of our model.
Related papers
- Floquet-engineered chiral-induced spin selectivity [0.0]
We show that CISS can be observed in achiral systems driven by an external circularly polarized laser field in the framework of Floquet engineering.
To obtain a wider range of energies for large spin polarization, a combination of chiral molecules and light-matter interactions is considered.
arXiv Detail & Related papers (2023-02-20T07:06:17Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Interface-Induced Conservation of Momentum Leads to Chiral-Induced Spin
Selectivity [1.3124513975412255]
We study the non-equilibrium dynamics of electron transmission from a straight waveguide to a helix with spin-orbit coupling.
The degree of spin selectivity depends on the width of the interface region, and no polarization is found for single-point couplings.
arXiv Detail & Related papers (2021-11-29T18:21:08Z) - Time evolution of spin singlet in static homogeneous exchange and
magnetic fields [0.0]
We study the effect of external static homogeneous exchange and magnetic field on the spin part of the singlet wave function of two electrons.
Some applications of our results to the theory of superconductivity and spin chemistry are presented.
arXiv Detail & Related papers (2021-11-08T14:54:59Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - The origin of chirality induced spin selectivity in photo-induced
electron transfer [0.0]
We propose a mechanism by which spin polarization can be generated dynamically in chiral molecular systems undergoing photo-induced electron transfer.
The proposed mechanism explains how spin polarization emerges in systems where charge transport is dominated by incoherent hopping.
arXiv Detail & Related papers (2021-06-11T18:01:05Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z) - Energy and momentum conservation in spin transfer [77.34726150561087]
We show that energy and linear momentum conservation laws impose strong constraints on the properties of magnetic excitations induced by spin transfer.
Our results suggest the possibility to achieve precise control of spin transfer-driven magnetization dynamics.
arXiv Detail & Related papers (2020-04-04T15:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.