論文の概要: CustOmics: A versatile deep-learning based strategy for multi-omics
integration
- arxiv url: http://arxiv.org/abs/2209.05485v1
- Date: Mon, 12 Sep 2022 14:20:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 13:16:22.691384
- Title: CustOmics: A versatile deep-learning based strategy for multi-omics
integration
- Title(参考訳): customics: マルチオミクス統合のための多彩なディープラーニングベースの戦略
- Authors: Hakim Benkirane, Yoann Pradat, Stefan Michiels, Paul-Henry Courn\`ede
- Abstract要約: 本稿では,高次元マルチソース統合の場合のデータセットに適応する,カスタマイズ可能なオートエンコーダモデルを構築するための新しい戦略を提案する。
我々は,統合戦略が潜在表現に与える影響を評価し,新しい手法であるCustOmicsを提案する最善の戦略を組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in high-throughput sequencing technologies have enabled the
extraction of multiple features that depict patient samples at diverse and
complementary molecular levels. The generation of such data has led to new
challenges in computational biology regarding the integration of
high-dimensional and heterogeneous datasets that capture the interrelationships
between multiple genes and their functions. Thanks to their versatility and
ability to learn synthetic latent representations of complex data, deep
learning methods offer promising perspectives for integrating multi-omics data.
These methods have led to the conception of many original architectures that
are primarily based on autoencoder models. However, due to the difficulty of
the task, the integration strategy is fundamental to take full advantage of the
sources' particularities without losing the global trends. This paper presents
a novel strategy to build a customizable autoencoder model that adapts to the
dataset used in the case of high-dimensional multi-source integration. We will
assess the impact of integration strategies on the latent representation and
combine the best strategies to propose a new method, CustOmics
(https://github.com/HakimBenkirane/CustOmics). We focus here on the integration
of data from multiple omics sources and demonstrate the performance of the
proposed method on test cases for several tasks such as classification and
survival analysis.
- Abstract(参考訳): 近年の高スループットシーケンシング技術の進歩により、患者サンプルを多様かつ相補的な分子レベルで表現する複数の特徴の抽出が可能になった。
このようなデータの生成は、複数の遺伝子とその機能間の相互関係を捉える高次元および異種データセットの統合に関する計算生物学における新たな課題につながった。
複雑なデータの合成潜在表現を学習する汎用性と能力のおかげで、ディープラーニング手法はマルチオミクスデータを統合する上で有望な視点を提供する。
これらの手法は、主にオートエンコーダモデルに基づく多くのオリジナルのアーキテクチャの概念を導いた。
しかし,課題の難しさから,グローバルなトレンドを損なうことなく,情報源の特質を最大限に活用する統合戦略が不可欠である。
本稿では,高次元マルチソース統合の場合のデータセットに適応する,カスタマイズ可能なオートエンコーダモデルを構築するための新しい戦略を提案する。
我々は,統合戦略が潜在表現に与える影響を評価し,新しい手法であるCustOmics(https://github.com/HakimBenkirane/CustOmics)を提案する最善の戦略を組み合わせる。
本稿では,複数のオミクスソースからのデータの統合に焦点をあて,分類や生存分析など,いくつかのタスクのテストケースにおける提案手法の性能を実証する。
関連論文リスト
- Supervised Multi-Modal Fission Learning [19.396207029419813]
マルチモーダルデータセットからの学習は相補的な情報を活用することができ、予測タスクのパフォーマンスを向上させることができる。
本稿では,グローバルな関節,部分的な関節,個々のコンポーネントを同時に識別するマルチモーダル・フィッション・ラーニング・モデルを提案する。
論文 参考訳(メタデータ) (2024-09-30T17:58:03Z) - Supervised Multiple Kernel Learning approaches for multi-omics data integration [1.3032276477872158]
マルチカーネル学習(MKL)は、マルチオミクス入力の多様な性質を考える上で、柔軟で有効なアプローチであることが示されている。
我々は、異なるカーネル融合戦略に基づく新しいMKLアプローチを提供する。
その結果、MKLベースのモデルは、より複雑で最先端の教師付きマルチオミクス積分アプローチと競合することを示した。
論文 参考訳(メタデータ) (2024-03-27T08:48:16Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
Semantic Segmentation [68.8204255655161]
セマンティックイメージセグメンテーションに関する最初の研究を行い、textitSmartAugment と textitSmartSamplingAugment の2つの新しいアプローチを紹介した。
SmartAugmentはベイジアン最適化を使用して、拡張戦略の豊富なスペースを探索し、私たちが考慮しているすべてのセマンティックセグメンテーションタスクにおいて、新しい最先端のパフォーマンスを達成する。
SmartSamplingAugmentは、固定的な拡張戦略を備えたシンプルなパラメータフリーのアプローチで、既存のリソース集約型アプローチとパフォーマンスを競い合い、安価な最先端データ拡張手法を上回っている。
論文 参考訳(メタデータ) (2021-10-31T13:04:45Z) - Handling Data Heterogeneity with Generative Replay in Collaborative
Learning for Medical Imaging [21.53220262343254]
本稿では,協調学習手法におけるデータ不均一性の課題に対処する新たな再生戦略を提案する。
一次モデルは所望のタスクを学習し、補助的な「生成再生モデル」は入力画像によく似た画像を合成するか、潜伏変数の抽出を支援する。
生成的再生戦略は柔軟であり、既存の協調学習手法に組み込んで、機関間のデータの均一性を扱う能力を向上させるか、あるいはコミュニケーションコストを削減するために、新しい個別の協調学習フレームワーク(FedReplayと称される)として使用される。
論文 参考訳(メタデータ) (2021-06-24T17:39:55Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
本稿では,医学領域における深層学習アーキテクチャのための新しいフェデレーション学習手法を提案する。
局所統計バッチ正規化(BN)層が導入され、協調的に訓練されるが中心に固有のモデルが作られる。
本研究では,Camelyon16およびCamelyon17データセットから抽出した腫瘍組織像の分類法についてベンチマークを行った。
論文 参考訳(メタデータ) (2020-08-17T15:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。