論文の概要: Deep Neural Networks as Complex Networks
- arxiv url: http://arxiv.org/abs/2209.05488v1
- Date: Mon, 12 Sep 2022 16:26:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 12:16:46.664290
- Title: Deep Neural Networks as Complex Networks
- Title(参考訳): 複雑なネットワークとしてのディープニューラルネットワーク
- Authors: Emanuele La Malfa, Gabriele La Malfa, Claudio Caprioli, Giuseppe
Nicosia, Vito Latora
- Abstract要約: 我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
- 参考スコア(独自算出の注目度): 1.704936863091649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks are, from a physical perspective, graphs whose `links`
and `vertices` iteratively process data and solve tasks sub-optimally. We use
Complex Network Theory (CNT) to represents Deep Neural Networks (DNNs) as
directed weighted graphs: within this framework, we introduce metrics to study
DNNs as dynamical systems, with a granularity that spans from weights to
layers, including neurons. CNT discriminates networks that differ in the number
of parameters and neurons, the type of hidden layers and activations, and the
objective task. We further show that our metrics discriminate low vs. high
performing networks. CNT is a comprehensive method to reason about DNNs and a
complementary approach to explain a model's behavior that is physically
grounded to networks theory and goes beyond the well-studied input-output
relation.
- Abstract(参考訳): Deep Neural Networksは物理的な観点から、‘links’と‘vertices’が反復的にデータを処理し、タスクを亜最適に解決するグラフである。
我々は、Deep Neural Networks(DNN)を重み付きグラフとして表現するために、複雑ネットワーク理論(CNT)を使用します。このフレームワークでは、DNNを動的システムとして研究するためのメトリクスを導入します。
CNTは、パラメータとニューロンの数、隠された層とアクティベーションの種類、および目的のタスクが異なるネットワークを識別する。
さらに,我々の指標が低パフォーマンスネットワークと高パフォーマンスネットワークを区別することを示す。
CNTは、DNNを推論するための包括的な手法であり、ネットワーク理論に物理的に根ざし、よく研究された入出力関係を超えたモデルの振る舞いを説明するための補完的なアプローチである。
関連論文リスト
- Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
ディープニューラルネットワーク(DNN)は、リンクと頂点が反復的にデータを処理し、タスクを亜最適に解くグラフとして表現することができる。複雑なネットワーク理論(CNT)は、統計物理学とグラフ理論を融合させ、その重みとニューロン構造を分析してニューラルネットワークを解釈する方法を提供する。
本研究では,DNNのトレーニング分布から抽出した測定値を用いて既存のCNTメトリクスを拡張し,純粋なトポロジカル解析からディープラーニングの解釈可能性へ移行する。
論文 参考訳(メタデータ) (2024-04-17T08:42:42Z) - Graph Metanetworks for Processing Diverse Neural Architectures [33.686728709734105]
Graph Metanetworks(GMN)は、競合するメソッドが苦労するニューラルネットワークに一般化する。
GMNは,入力ニューラルネットワーク関数を残したパラメータ置換対称性と等価であることを示す。
論文 参考訳(メタデータ) (2023-12-07T18:21:52Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Learning Ability of Interpolating Deep Convolutional Neural Networks [28.437011792990347]
我々は,深層ニューラルネットワーク,深層畳み込みニューラルネットワーク(DCNN)の重要なファミリーの学習能力について検討する。
非補間DCNNに適切に定義された層を追加することで、非補間DCNNの良好な学習率を維持する補間DCNNが得られることを示す。
我々の研究は、過度に適合したDCNNの一般化の理論的検証を提供する。
論文 参考訳(メタデータ) (2022-10-25T17:22:31Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - Structure and Performance of Fully Connected Neural Networks: Emerging
Complex Network Properties [0.8484871864277639]
完全連結ニューラルネットワークの構造と性能を解析するために,複素ネットワーク(CN)技術を提案する。
4万のモデルとそれぞれのCNプロパティでデータセットを構築します。
本研究は,完全連結ニューラルネットワークの性能において,CN特性が重要な役割を担っていることを示唆する。
論文 参考訳(メタデータ) (2021-07-29T14:53:52Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。