論文の概要: Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks
- arxiv url: http://arxiv.org/abs/2110.02628v1
- Date: Wed, 6 Oct 2021 10:03:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-07 14:12:57.831414
- Title: Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks
- Title(参考訳): 複雑なネットワークによる深層ニューラルネットワークの学習ダイナミクスのキャラクタリゼーション
- Authors: Emanuele La Malfa, Gabriele La Malfa, Giuseppe Nicosia, Vito Latora
- Abstract要約: 複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
- 参考スコア(独自算出の注目度): 1.0869257688521987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we interpret Deep Neural Networks with Complex Network Theory.
Complex Network Theory (CNT) represents Deep Neural Networks (DNNs) as directed
weighted graphs to study them as dynamical systems. We efficiently adapt CNT
measures to examine the evolution of the learning process of DNNs with
different initializations and architectures: we introduce metrics for
nodes/neurons and layers, namely Nodes Strength and Layers Fluctuation. Our
framework distills trends in the learning dynamics and separates low from high
accurate networks. We characterize populations of neural networks (ensemble
analysis) and single instances (individual analysis). We tackle standard
problems of image recognition, for which we show that specific learning
dynamics are indistinguishable when analysed through the solely Link-Weights
analysis. Further, Nodes Strength and Layers Fluctuations make unprecedented
behaviours emerge: accurate networks, when compared to under-trained models,
show substantially divergent distributions with the greater extremity of
deviations. On top of this study, we provide an efficient implementation of the
CNT metrics for both Convolutional and Fully Connected Networks, to fasten the
research in this direction.
- Abstract(参考訳): 本稿では,Deep Neural Networks with Complex Network Theoryについて述べる。
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
我々は、ノード/ニューロンとレイヤ、すなわちノード強度とレイヤ変動のメトリクスを導入し、異なる初期化とアーキテクチャでDNNの学習プロセスの進化を調べるために、CNT尺度を効率的に適用する。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低レベルを分離する。
ニューラルネットワーク(アンサンブル解析)と単一インスタンス(個別解析)の個体群を特徴付ける。
画像認識の標準問題に取り組み,リンク重み付け分析のみを通して解析すると,特定の学習ダイナミクスは区別できないことを示した。
さらに、ノードの強度と層変動は前例のない振る舞いを発生させる: 正確なネットワークは、訓練不足のモデルと比較すると、偏差が大きいほど実質的に異なる分布を示す。
本研究は,コンボリューショナルネットワークとフル接続ネットワークの両方に対して,CNTメトリクスの効率的な実装を提供することにより,この方向の研究を高速化する。
関連論文リスト
- Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
我々は,一般的なDGDアルゴリズムを用いて学習した広範ニューラルネットワークの学習力学を,明示的で非漸近的に特徴づける。
我々は,誤りや誤りを正確に予測し,分析結果を検証した。
論文 参考訳(メタデータ) (2024-09-23T17:57:58Z) - Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
ディープニューラルネットワーク(DNN)は、リンクと頂点が反復的にデータを処理し、タスクを亜最適に解くグラフとして表現することができる。複雑なネットワーク理論(CNT)は、統計物理学とグラフ理論を融合させ、その重みとニューロン構造を分析してニューラルネットワークを解釈する方法を提供する。
本研究では,DNNのトレーニング分布から抽出した測定値を用いて既存のCNTメトリクスを拡張し,純粋なトポロジカル解析からディープラーニングの解釈可能性へ移行する。
論文 参考訳(メタデータ) (2024-04-17T08:42:42Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は神経科学と人工知能において重要なパラダイムとなっている。
近年,深層ニューラルネットワークのネットワーク表現について研究が進められている。
論文 参考訳(メタデータ) (2024-03-19T05:37:26Z) - Riemannian Residual Neural Networks [58.925132597945634]
残余ニューラルネットワーク(ResNet)の拡張方法を示す。
ResNetは、機械学習において、有益な学習特性、優れた経験的結果、そして様々なニューラルネットワークを構築する際に容易に組み込める性質のために、ユビキタスになった。
論文 参考訳(メタデータ) (2023-10-16T02:12:32Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。