論文の概要: It's Not Fairness, and It's Not Fair: The Failure of Distributional
Equality and the Promise of Relational Equality in Complete-Information
Hiring Games
- arxiv url: http://arxiv.org/abs/2209.05602v1
- Date: Mon, 12 Sep 2022 20:35:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 13:29:37.825770
- Title: It's Not Fairness, and It's Not Fair: The Failure of Distributional
Equality and the Promise of Relational Equality in Complete-Information
Hiring Games
- Title(参考訳): フェアネスではない、フェアではない:完全情報採用ゲームにおける分布平等の失敗と関係平等の約束
- Authors: Benjamin Fish and Luke Stark
- Abstract要約: 既存の差別と不正は、しばしば、不平等な資源の分配よりも、不平等な社会的関係の結果である。
フェアネスと平等という既存の計算的・経済的定義を最適化しても、不平等な社会的関係を防げないことを示す。
- 参考スコア(独自算出の注目度): 2.8935588665357077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing efforts to formulate computational definitions of fairness have
largely focused on distributional notions of equality, where equality is
defined by the resources or decisions given to individuals in the system. Yet
existing discrimination and injustice is often the result of unequal social
relations, rather than an unequal distribution of resources. Here, we show how
optimizing for existing computational and economic definitions of fairness and
equality fail to prevent unequal social relations. To do this, we provide an
example of a self-confirming equilibrium in a simple hiring market that is
relationally unequal but satisfies existing distributional notions of fairness.
In doing so, we introduce a notion of blatant relational unfairness for
complete-information games, and discuss how this definition helps initiate a
new approach to incorporating relational equality into computational systems.
- Abstract(参考訳): 公正性の計算的定義を定式化するための既存の取り組みは、システム内の個人に与えられる資源や決定によって平等が定義される、平等の分布的概念に主に焦点を当てている。
しかし、既存の差別と不正は、資源の不平等な分配ではなく、しばしば不平等な社会関係の結果である。
本稿では、公平性と平等の既存の計算および経済的な定義に対する最適化が、不平等な社会関係をいかに防げないかを示す。
これを実現するために、リレーショナルに不平等であるが、フェアネスの既存の分布概念を満たす単純な雇用市場における自己確認均衡の例を示す。
そこで本論文では,完全情報ゲームにおけるブラタントな関係不公平性の概念を導入し,この定義が,関係等式を計算システムに組み込むための新たなアプローチの創出にどのように役立つのかを論じる。
関連論文リスト
- Implementing Fairness: the view from a FairDream [0.0]
私たちはAIモデルをトレーニングし、不平等を検出して修正するために、独自の公正パッケージFairDreamを開発します。
本実験は,FairDreamの特性として,真理を条件としたフェアネスの目標を達成できることを実証した。
論文 参考訳(メタデータ) (2024-07-20T06:06:24Z) - What's Distributive Justice Got to Do with It? Rethinking Algorithmic Fairness from the Perspective of Approximate Justice [1.8434042562191815]
不完全な意思決定システムという文脈では、個人間での利益/利益の理想的な分配がどのようなものになるかだけを気にすべきではない、と私たちは主張する。
このためには、アルゴリズムフェアネス研究者として、分配的正義を見極め、公正性基準を使用する方法を再考する必要がある。
論文 参考訳(メタデータ) (2024-07-17T11:13:23Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - Reconciling Predictive and Statistical Parity: A Causal Approach [68.59381759875734]
本稿では,予測パリティに付随する公平度対策のための因果分解式を提案する。
統計的および予測パリティの概念は、実際には互いに排他的ではなく、相補的であり、公正の概念のスペクトルにまたがっていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:23:22Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
我々は、機械学習と医療格差における公正性の交差を分析する。
機械学習の観点から、関連する公正度メトリクスを批判的にレビューする。
本稿では,医療における倫理的かつ公平なMLアプリケーション開発を約束する新たな研究指針を提案する。
論文 参考訳(メタデータ) (2022-06-29T04:32:10Z) - Impossibility of What? Formal and Substantive Equality in Algorithmic
Fairness [3.42658286826597]
アルゴリズムの公正性に対する支配的な「形式的」アプローチは、平等を追求する枠組みとして不十分である、と私は主張する。
社会階層に反するアルゴリズムフェアネスに対する「実質的」アプローチを提案する。
形式的および実体的アルゴリズム的公正の区別は、各アプローチの「公正の実証可能性」に対する応答によって実証される。
論文 参考訳(メタデータ) (2021-07-09T19:29:57Z) - Distributive Justice and Fairness Metrics in Automated Decision-making:
How Much Overlap Is There? [0.0]
機会の平等を実践する指標は、資源割り当てが保存性に基づいている場合にのみ適用されるが、アロケーションが平等主義、十分性、優先順位に関する懸念を反映すべきときに失敗することを示す。
予測タスクと意思決定タスクをきれいに区別することで、公平な機械学習の研究は分散的正義に関する豊かな文献をよりうまく活用できると論じている。
論文 参考訳(メタデータ) (2021-05-04T12:09:26Z) - Statistical Equity: A Fairness Classification Objective [6.174903055136084]
エクイティの原則によって動機付けられた新しい公平性の定義を提案する。
フェアネスの定義を形式化し、適切な文脈でモチベーションを与えます。
我々は、定義の有効性を示すために、複数の自動評価と人的評価を行う。
論文 参考訳(メタデータ) (2020-05-14T23:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。