Securing Genomic Data Against Inference Attacks in Federated Learning Environments
- URL: http://arxiv.org/abs/2505.07188v1
- Date: Mon, 12 May 2025 02:36:50 GMT
- Title: Securing Genomic Data Against Inference Attacks in Federated Learning Environments
- Authors: Chetan Pathade, Shubham Patil,
- Abstract summary: Federated Learning (FL) offers a promising framework for collaboratively training machine learning models across decentralized genomic datasets without direct data sharing.<n>While this approach preserves data locality, it remains susceptible to sophisticated inference attacks that can compromise individual privacy.<n>In this study, we simulate a federated learning setup using synthetic genomic data and assess its vulnerability to three key attack vectors.
- Score: 0.31570310818616687
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) offers a promising framework for collaboratively training machine learning models across decentralized genomic datasets without direct data sharing. While this approach preserves data locality, it remains susceptible to sophisticated inference attacks that can compromise individual privacy. In this study, we simulate a federated learning setup using synthetic genomic data and assess its vulnerability to three key attack vectors: Membership Inference Attack (MIA), Gradient-Based Membership Inference Attack, and Label Inference Attack (LIA). Our experiments reveal that Gradient-Based MIA achieves the highest effectiveness, with a precision of 0.79 and F1-score of 0.87, underscoring the risk posed by gradient exposure in federated updates. Additionally, we visualize comparative attack performance through radar plots and quantify model leakage across clients. The findings emphasize the inadequacy of na\"ive FL setups in safeguarding genomic privacy and motivate the development of more robust privacy-preserving mechanisms tailored to the unique sensitivity of genomic data.
Related papers
- Privacy-Preserved Automated Scoring using Federated Learning for Educational Research [1.2556373621040728]
We propose a federated learning (FL) framework for automated scoring of educational assessments.<n>We benchmark our model against two state-of-the-art FL methods and a centralized learning baseline.<n>Results show that our model achieves the highest accuracy (94.5%) among FL approaches.
arXiv Detail & Related papers (2025-03-12T19:06:25Z) - Attribute Inference Attacks for Federated Regression Tasks [14.152503562997662]
Federated Learning (FL) enables clients to collaboratively train a global machine learning model while keeping their data localized.<n>Recent studies have revealed that the training phase of FL is vulnerable to reconstruction attacks.<n>We propose novel model-based AIAs specifically designed for regression tasks in FL environments.
arXiv Detail & Related papers (2024-11-19T18:06:06Z) - Federated Knowledge Recycling: Privacy-Preserving Synthetic Data Sharing [5.0243930429558885]
Federated Knowledge Recycling (FedKR) is a cross-silo federated learning approach that uses locally generated synthetic data to facilitate collaboration between institutions.
FedKR combines advanced data generation techniques with a dynamic aggregation process to provide greater security against privacy attacks than existing methods.
arXiv Detail & Related papers (2024-07-30T13:56:26Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Active Membership Inference Attack under Local Differential Privacy in
Federated Learning [18.017082794703555]
Federated learning (FL) was originally regarded as a framework for collaborative learning among clients with data privacy protection.
We propose a new active membership inference (AMI) attack carried out by a dishonest server in FL.
arXiv Detail & Related papers (2023-02-24T15:21:39Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
Federated learning is a distributed framework designed to address privacy concerns.<n>It introduces new attack surfaces, which are especially prone when data is non-Independently and Identically Distributed.<n>We present FedCC, a simple yet effective novel defense algorithm against model poisoning attacks.
arXiv Detail & Related papers (2022-12-05T01:52:32Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Concealing Sensitive Samples against Gradient Leakage in Federated
Learning [41.43099791763444]
Federated Learning (FL) is a distributed learning paradigm that enhances users privacy by eliminating the need for clients to share raw, private data with the server.
Recent studies expose the vulnerability of FL to model inversion attacks, where adversaries reconstruct users private data via eavesdropping on the shared gradient information.
We present a simple, yet effective defense strategy that obfuscates the gradients of the sensitive data with concealed samples.
arXiv Detail & Related papers (2022-09-13T04:19:35Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks.
This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks.
arXiv Detail & Related papers (2021-02-01T06:06:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.