論文の概要: Time-of-Day Neural Style Transfer for Architectural Photographs
- arxiv url: http://arxiv.org/abs/2209.05800v1
- Date: Tue, 13 Sep 2022 08:00:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 13:20:58.370510
- Title: Time-of-Day Neural Style Transfer for Architectural Photographs
- Title(参考訳): 建築写真のための日時ニューラルスタイル転送
- Authors: Yingshu Chen, Tuan-Anh Vu, Ka-Chun Shum, Binh-Son Hua, Sai-Kit Yeung
- Abstract要約: 建築写真のためのニューラルスタイル転送手法に着目する。
本手法は,建築写真における前景と背景の構成に対処する。
実験の結果,本手法は前景と背景の両方に光写実的照明と色調を再現できることがわかった。
- 参考スコア(独自算出の注目度): 18.796803920214238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Architectural photography is a genre of photography that focuses on capturing
a building or structure in the foreground with dramatic lighting in the
background. Inspired by recent successes in image-to-image translation methods,
we aim to perform style transfer for architectural photographs. However, the
special composition in architectural photography poses great challenges for
style transfer in this type of photographs. Existing neural style transfer
methods treat the architectural images as a single entity, which would generate
mismatched chrominance and destroy geometric features of the original
architecture, yielding unrealistic lighting, wrong color rendition, and visual
artifacts such as ghosting, appearance distortion, or color mismatching. In
this paper, we specialize a neural style transfer method for architectural
photography. Our method addresses the composition of the foreground and
background in an architectural photograph in a two-branch neural network that
separately considers the style transfer of the foreground and the background,
respectively. Our method comprises a segmentation module, a learning-based
image-to-image translation module, and an image blending optimization module.
We trained our image-to-image translation neural network with a new dataset of
unconstrained outdoor architectural photographs captured at different magic
times of a day, utilizing additional semantic information for better
chrominance matching and geometry preservation. Our experiments show that our
method can produce photorealistic lighting and color rendition on both the
foreground and background, and outperforms general image-to-image translation
and arbitrary style transfer baselines quantitatively and qualitatively. Our
code and data are available at
https://github.com/hkust-vgd/architectural_style_transfer.
- Abstract(参考訳): 建築写真は、前景の建物や構造物を撮影することに焦点を当てた写真ジャンルであり、背景には劇的な照明がある。
近年のイメージ・ツー・イメージ翻訳手法の成功に触発されて,建築写真のスタイル・トランスファーを行う。
しかし、建築写真における特殊構成は、この種の写真におけるスタイル伝達に大きな課題をもたらす。
既存のニューラルスタイルの転送手法は、アーキテクチャイメージを単一のエンティティとして扱い、ミスマッチしたクロミナンスを生成し、元のアーキテクチャの幾何学的特徴を破壊し、非現実的な照明、色再現、ゴースト、外観歪み、色ミスマッチなどの視覚的アーティファクトを生成する。
本稿では,建築写真におけるニューラルスタイル伝達法を専門とする。
本手法は, 前景と背景のスタイル伝達をそれぞれ別々に検討した2分岐ニューラルネットワークを用いて, 建築写真における前景と背景の構成について検討する。
本手法は,セグメンテーションモジュール,学習に基づく画像合成モジュール,画像ブレンディング最適化モジュールから構成される。
我々は、画像から画像への変換ニューラルネットワークを、1日の異なるマジックタイムで撮影された、制約のない屋外建築写真の新しいデータセットで訓練した。
実験により,本手法は前景と背景の両方で光写実光や色調を生成でき,画像から画像への変換や任意のスタイルの転送ベースラインを定量的に,質的に上回ることを示す。
私たちのコードとデータはhttps://github.com/hkust-vgd/architectural_style_transfer.comで利用可能です。
関連論文リスト
- Machine Apophenia: The Kaleidoscopic Generation of Architectural Images [11.525355831490828]
本研究では,建築設計における生成人工知能の適用について検討する。
本稿では,複数のニューラルネットワークを組み合わせて,教師なしかつ修正されていないユニークなアーキテクチャイメージのストリームを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T11:11:19Z) - Generative AI Model for Artistic Style Transfer Using Convolutional
Neural Networks [0.0]
芸術的なスタイルの転送は、ある画像の内容を別の芸術的なスタイルに融合させ、ユニークな視覚的な構成を作り出すことである。
本稿では,畳み込みニューラルネットワーク(CNN)を用いた新しいスタイル伝達手法の概要を概説する。
論文 参考訳(メタデータ) (2023-10-27T16:21:17Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - Arbitrary Style Transfer with Structure Enhancement by Combining the
Global and Local Loss [51.309905690367835]
本稿では,グローバルな損失と局所的な損失を組み合わせ,構造拡張を伴う任意のスタイル転送手法を提案する。
実験結果から,視覚効果の優れた高画質画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2022-07-23T07:02:57Z) - Learning Diverse Tone Styles for Image Retouching [73.60013618215328]
本稿では,フローベースアーキテクチャの標準化により,多様な画像のリタッチを学習することを提案する。
ジョイントトレーニングパイプラインは、スタイルエンコーダ、条件付きRetouchNet、イメージトーンスタイル正規化フロー(TSFlow)モジュールで構成される。
提案手法は最先端の手法に対して良好に動作し,多様な結果を生成するのに有効である。
論文 参考訳(メタデータ) (2022-07-12T09:49:21Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - UMFA: A photorealistic style transfer method based on U-Net and
multi-layer feature aggregation [0.0]
本稿では,フォトリアリスティックなイメージスタイリングの自然な効果を強調するために,フォトリアリスティックなスタイル転送ネットワークを提案する。
特に、高密度ブロックに基づくエンコーダとU-Netの対称構造を形成するデコーダとを連立して、効率的な特徴抽出と画像再構成を実現する。
論文 参考訳(メタデータ) (2021-08-13T08:06:29Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
制御可能な人物画像生成は、望ましい属性を持つ現実的な人間の画像を作成することを目的としている。
本稿では,学習フロー場とワープ変調パラメータを統合した空間適応型ワープ正規化(SAWN)を提案する。
本稿では,テクスチャ・トランスファータスクの事前学習モデルを洗練するための,新たな自己学習部分置換戦略を提案する。
論文 参考訳(メタデータ) (2021-05-31T07:07:44Z) - Deep Image Compositing [93.75358242750752]
ユーザ入力なしで高品質の画像合成を自動生成する手法を提案する。
ラプラシアン・ピラミッド・ブレンディングにインスパイアされ、フォアグラウンドや背景画像からの情報を効果的に融合させるために、密結合型多ストリーム融合ネットワークが提案されている。
実験により,提案手法は高品質な合成物を自動生成し,定性的かつ定量的に既存手法より優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-11-04T06:12:24Z) - Joint Bilateral Learning for Real-time Universal Photorealistic Style
Transfer [18.455002563426262]
フォトリアリスティックなスタイル転送は、画像の芸術的スタイルをコンテンツターゲットに転送し、カメラで撮影可能な結果を生成するタスクである。
ディープニューラルネットワークに基づく最近のアプローチでは、印象的な結果が得られるが、現実的な解像度での実行には遅すぎるか、好ましくないアーティファクトがまだ含まれている。
高速かつ本質的にフォトリアリスティックな結果を生成するフォトリアリスティックなスタイル転送のための新しいエンド・ツー・エンドモデルを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:31:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。