論文の概要: Variational Causal Inference
- arxiv url: http://arxiv.org/abs/2209.05935v3
- Date: Tue, 22 Oct 2024 18:45:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:02.690221
- Title: Variational Causal Inference
- Title(参考訳): 変分因果推論
- Authors: Yulun Wu, Layne C. Price, Zichen Wang, Vassilis N. Ioannidis, Robert A. Barton, George Karypis,
- Abstract要約: 対実的治療下での個人の潜在的な成果を推定することは難しい課題である。
結果構築のための2つの主要な情報源を厳密に統合した深い変分ベイズ的枠組みを提案する。
- 参考スコア(独自算出の注目度): 29.506997688252294
- License:
- Abstract: Estimating an individual's potential outcomes under counterfactual treatments is a challenging task for traditional causal inference and supervised learning approaches when the outcome is high-dimensional (e.g. gene expressions, impulse responses, human faces) and covariates are relatively limited. In this case, to construct one's outcome under a counterfactual treatment, it is crucial to leverage individual information contained in its observed factual outcome on top of the covariates. We propose a deep variational Bayesian framework that rigorously integrates two main sources of information for outcome construction under a counterfactual treatment: one source is the individual features embedded in the high-dimensional factual outcome; the other source is the response distribution of similar subjects (subjects with the same covariates) that factually received this treatment of interest.
- Abstract(参考訳): 結果が高次元(例えば、遺伝子発現、インパルス応答、人間の顔)である場合、従来の因果推論や教師付き学習アプローチでは、個人による潜在的な結果の推定は難しい課題である。
この場合、反事実的治療の下で結果を構築するためには、観察された事実的結果に含まれる個々の情報を活用することが不可欠である。
本稿では,2つの情報ソースを因果的処理の下で厳密に統合する深部変分ベイズ的枠組みを提案する。一方の情報源は,高次元の事実に埋め込まれた個々の特徴であり,他方の情報源は,この処理を実際的に受け取っている類似した対象(同じ共変量を持つ対象)の応答分布である。
関連論文リスト
- Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
因果発見(Causal Discovery)は、構成変数の統計的性質を分析することで、この問題に取り組む手法である。
教師付き学習によって得られたことに基づいて,現在の(おそらく誤解を招く)ベースライン結果に疑問を呈する。
その結果、堅牢な相互情報測定を用いて、教師なしの方法でこの問題にアプローチする。
論文 参考訳(メタデータ) (2024-08-01T09:11:08Z) - Contrastive Balancing Representation Learning for Heterogeneous Dose-Response Curves Estimation [34.20279432270329]
治療量の変化に対する個人の潜在的反応を推定することは、精密医療や管理科学などの分野における意思決定に不可欠である。
異種線量応答曲線を推定するために,CRNetと呼ばれる部分距離測度を用いたコントラストバランス表現学習ネットワークを提案する。
論文 参考訳(メタデータ) (2024-03-21T08:41:53Z) - Causal Inference from Text: Unveiling Interactions between Variables [20.677407402398405]
既存の方法は、治療と結果の両方に影響を及ぼす共変量しか説明できない。
このバイアスは、衝突しない共変量について十分に考慮されていないことから生じる。
本研究では,変数間の相互作用を明らかにすることにより,バイアスを軽減することを目的とする。
論文 参考訳(メタデータ) (2023-11-09T11:29:44Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Interpretable Deep Causal Learning for Moderation Effects [0.0]
本稿では、因果機械学習モデルにおける解釈可能性と目標正規化の問題に対処する。
本稿では,個別の処理効果を推定するための新しい深層対実学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-21T11:21:09Z) - Non parametric estimation of causal populations in a counterfactual
scenario [6.247939901619901]
本稿では,この問題を欠落データモデルとして再定義する革新的な手法を提案する。
目的は、治療と結果の関数として定義される、真菌集団の隠れ分布を推定することである。
論文 参考訳(メタデータ) (2021-12-08T13:51:24Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
本稿では,DCRN(Disentangled Counterfactual Recurrent Network)を提案する。
時間とともに治療効果の因果構造に完全にインスパイアされたアーキテクチャでは、予測精度と疾患理解が向上する。
実データとシミュレーションデータの両方において,DCRNが処理応答予測の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-12-07T16:40:28Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Causal Effect Estimation using Variational Information Bottleneck [19.6760527269791]
因果推論とは、介入が適用されるときの因果関係における因果効果を推定することである。
変分情報ボトルネック(CEVIB)を用いて因果効果を推定する手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T13:46:12Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
因果推論に基づく因果意味生成モデル(CSG)を提案し,その2つの要因を別々にモデル化する。
CSGはトレーニングデータに適合させることで意味的因子を識別できることを示し、この意味的識別はOOD一般化誤差の有界性を保証する。
論文 参考訳(メタデータ) (2020-11-03T13:16:05Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
観察データから治療効果を推定する際の根本的な問題は、共同設立者の識別とバランスである。
これまでの方法の多くは、観察されたすべての事前処理変数を共同創設者として扱い、共同創設者と非共同創設者の識別をさらに無視することで、共同ファウンダーのバランスを実現していた。
本研究では,1)共同創設者と非共同創設者の両方の表現を学習することで共同創設者を同定し,2)再重み付け手法のバランスをとるとともに,同時に,反実的推論による観察研究における治療効果を推定する相乗的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-12T09:50:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。