論文の概要: Deep Disentangled Representation Network for Treatment Effect Estimation
- arxiv url: http://arxiv.org/abs/2507.06650v1
- Date: Wed, 09 Jul 2025 08:29:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.525136
- Title: Deep Disentangled Representation Network for Treatment Effect Estimation
- Title(参考訳): 治療効果推定のためのディープディスタングル表現ネットワーク
- Authors: Hui Meng, Keping Yang, Xuyu Peng, Bo Zheng,
- Abstract要約: 観察データから個々のレベルの治療効果を推定することは因果推論の根本的な問題である。
本稿では,多面的注意を伴う専門家の混在を考慮した新しい治療効果推定アルゴリズムを提案する。
我々は、公開半合成および実世界の両方の生産データセットについて広範な実験を行う。
- 参考スコア(独自算出の注目度): 17.787544758117377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating individual-level treatment effect from observational data is a fundamental problem in causal inference and has attracted increasing attention in the fields of education, healthcare, and public policy.In this work, we concentrate on the study of disentangled representation methods that have shown promising outcomes by decomposing observed covariates into instrumental, confounding, and adjustment factors. However, most of the previous work has primarily revolved around generative models or hard decomposition methods for covariates, which often struggle to guarantee the attainment of precisely disentangled factors. In order to effectively model different causal relationships, we propose a novel treatment effect estimation algorithm that incorporates a mixture of experts with multi-head attention and a linear orthogonal regularizer to softly decompose the pre-treatment variables, and simultaneously eliminates selection bias via importance sampling re-weighting techniques. We conduct extensive experiments on both public semi-synthetic and real-world production datasets. The experimental results clearly demonstrate that our algorithm outperforms the state-of-the-art methods focused on individual treatment effects.
- Abstract(参考訳): 観察データから個人レベルの治療効果を推定することは、因果推論の根本的な問題であり、教育、医療、公共政策の分野で注目を集めている。
しかし、以前の研究のほとんどは、主に共変体の生成モデルや硬分解法を中心に展開しており、しばしば正確な非絡み合いの要因の達成を保証するのに苦労している。
因果関係を効果的にモデル化するために,多面的注意を持つ専門家と線形直交正規化器を併用して,前処理変数をソフトに分解し,重要サンプリング再重み付け手法による選択バイアスを同時に除去する新しい処理効果推定アルゴリズムを提案する。
我々は、公開半合成および実世界の両方の生産データセットについて広範な実験を行う。
実験結果から,本アルゴリズムは個々の治療効果に着目した最先端手法よりも優れていることが示された。
関連論文リスト
- Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
個々の治療効果は、個々のレベルで最もきめ細かい治療効果を提供する。
本稿では,これらの複雑な課題に対処する共形拡散モデルに基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-02T21:35:08Z) - Data-Driven Estimation of Heterogeneous Treatment Effects [15.140272661540655]
異種治療効果推定(ヘテロジニアス・エフェクト・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント・アセスメント)は、経験科学において重要な問題である。
機械学習を用いた不均一な処理効果推定のための最先端データ駆動手法について調査する。
論文 参考訳(メタデータ) (2023-01-16T21:36:49Z) - Interpretable Deep Causal Learning for Moderation Effects [0.0]
本稿では、因果機械学習モデルにおける解釈可能性と目標正規化の問題に対処する。
本稿では,個別の処理効果を推定するための新しい深層対実学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-21T11:21:09Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
観察データから治療効果を推定する際の根本的な問題は、共同設立者の識別とバランスである。
これまでの方法の多くは、観察されたすべての事前処理変数を共同創設者として扱い、共同創設者と非共同創設者の識別をさらに無視することで、共同ファウンダーのバランスを実現していた。
本研究では,1)共同創設者と非共同創設者の両方の表現を学習することで共同創設者を同定し,2)再重み付け手法のバランスをとるとともに,同時に,反実的推論による観察研究における治療効果を推定する相乗的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。