Riemannian optimization of photonic quantum circuits in phase and Fock space
- URL: http://arxiv.org/abs/2209.06069v5
- Date: Tue, 21 May 2024 02:37:16 GMT
- Title: Riemannian optimization of photonic quantum circuits in phase and Fock space
- Authors: Yuan Yao, Filippo Miatto, Nicolás Quesada,
- Abstract summary: We propose a framework to design and optimize generic photonic quantum circuits composed of Gaussian objects.
We also make our framework extendable to non-Gaussian objects that can be written as linear combinations of Gaussian ones.
- Score: 4.601534909359792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework to design and optimize generic photonic quantum circuits composed of Gaussian objects (pure and mixed Gaussian states, Gaussian unitaries, Gaussian channels, Gaussian measurements) as well as non-Gaussian effects such as photon-number-resolving measurements. In this framework, we parametrize a phase space representation of Gaussian objects using elements of the symplectic group (or the unitary or orthogonal group in special cases), and then we transform it into the Fock representation using a single linear recurrence relation that computes the Fock amplitudes of any Gaussian object recursively. We also compute the gradient of the Fock amplitudes with respect to phase space parameters by differentiating through the recurrence relation. We can then use Riemannian optimization on the symplectic group to optimize M-mode Gaussian objects, avoiding the need to commit to particular realizations in terms of fundamental gates. This allows us to "mod out" all the different gate-level implementations of the same circuit, which now can be chosen after the optimization has completed. This can be especially useful when looking to answer general questions, such as bounding the value of a property over a class of states or transformations, or when one would like to worry about hardware constraints separately from the circuit optimization step. Finally, we make our framework extendable to non-Gaussian objects that can be written as linear combinations of Gaussian ones, by explicitly computing the change in global phase when states undergo Gaussian transformations. We implemented all of these methods in the freely available open-source library MrMustard, which we use in three examples to optimize the 216-mode interferometer in Borealis, and 2- and 3-modes circuits (with Fock measurements) to produce cat states and cubic phase states.
Related papers
- Gaussian boson sampling for binary optimization [0.0]
We propose to use a parametrized Gaussian Boson Sampler (GBS) with threshold detectors to address binary optimization problems.
Numerical experiments on 3-SAT and Graphing problems show significant performance gains over random guessing.
arXiv Detail & Related papers (2024-12-19T12:12:22Z) - Displaced Fermionic Gaussian States and their Classical Simulation [0.0]
This work explores displaced fermionic Gaussian operators with nonzero linear terms.
We first demonstrate equivalence between several characterizations of displaced Gaussian states.
We also provide an efficient classical simulation protocol for displaced Gaussian circuits.
arXiv Detail & Related papers (2024-11-27T17:05:04Z) - PixelGaussian: Generalizable 3D Gaussian Reconstruction from Arbitrary Views [116.10577967146762]
PixelGaussian is an efficient framework for learning generalizable 3D Gaussian reconstruction from arbitrary views.
Our method achieves state-of-the-art performance with good generalization to various numbers of views.
arXiv Detail & Related papers (2024-10-24T17:59:58Z) - Classical simulation of non-Gaussian bosonic circuits [0.4972323953932129]
We propose efficient classical algorithms to simulate bosonic linear optics circuits applied to superpositions of Gaussian states.
We present an exact simulation algorithm whose runtime is in the number of modes and the size of the circuit.
We also present a faster approximate randomized algorithm whose runtime is quadratic in this number.
arXiv Detail & Related papers (2024-03-27T23:52:35Z) - Classical simulation of non-Gaussian fermionic circuits [0.4972323953932129]
We argue that this problem is analogous to that of simulating Clifford circuits with non-stabilizer initial states.
Our construction is based on an extension of the covariance matrix formalism which permits to efficiently track relative phases in superpositions of Gaussian states.
It yields simulation algorithms with complexity in the number of fermions, the desired accuracy, and certain quantities capturing the degree of non-Gaussianity of the initial state.
arXiv Detail & Related papers (2023-07-24T16:12:29Z) - Improved simulation of quantum circuits dominated by free fermionic operations [1.024113475677323]
We present an algorithm for simulating universal quantum circuits composed of "free" nearest-neighbour matchgates or equivalently fermionic-linear-optical (FLO) gates, and "resourceful" non-Gaussian gates.
Our key contribution is the development of a novel phase-sensitive algorithm for simulating FLO circuits.
For a quantum circuit containing arbitrary FLO unitaries and $k$ controlled-Z gates, we obtain an exponential improvement $k$O(4.5k)$O over the prior state-of-the-art.
arXiv Detail & Related papers (2023-07-24T11:36:28Z) - Characterization of variational quantum algorithms using free fermions [0.0]
We numerically study the interplay between these symmetries and the locality of the target state.
We find that the number of iterations to converge to the solution scales linearly with system size.
arXiv Detail & Related papers (2022-06-13T18:11:16Z) - Gaussian states and operations -- a quick reference [0.0]
This note serves as a concise reference for performing phase-space calculations on Gaussian states.
In particular, we list symplectic transformations for commonly used optical operations.
arXiv Detail & Related papers (2021-02-10T21:42:35Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm.
The method is based on notions of descent gradient attuned to the local geometry.
We use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.
arXiv Detail & Related papers (2020-09-24T18:00:36Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.