論文の概要: Generate novel and robust samples from data: accessible sharing without
privacy concerns
- arxiv url: http://arxiv.org/abs/2209.06113v1
- Date: Mon, 12 Sep 2022 03:21:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 13:21:52.917910
- Title: Generate novel and robust samples from data: accessible sharing without
privacy concerns
- Title(参考訳): データから新規で堅牢なサンプルを生成する:プライバシーの懸念なしにアクセス可能な共有
- Authors: David Banh, Alan Huang
- Abstract要約: データセットから新しいサンプルを生成することで、余分な高価な操作が軽減され、侵入手順が増加し、プライバシーの問題が軽減される。
この方法は、敵攻撃の欠陥である識別問題やバイアスに関連する問題なく、より良いデータ共有の実践を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating new samples from data sets can mitigate extra expensive
operations, increased invasive procedures, and mitigate privacy issues. These
novel samples that are statistically robust can be used as a temporary and
intermediate replacement when privacy is a concern. This method can enable
better data sharing practices without problems relating to identification
issues or biases that are flaws for an adversarial attack.
- Abstract(参考訳): データセットから新しいサンプルを生成することで、余分な高価な操作が軽減され、侵入手順が増加し、プライバシーの問題が軽減される。
統計的にロバストなこれらの新しいサンプルは、プライバシが懸念されている場合、一時的および中間的な代替として使用できる。
この方法は、敵の攻撃の欠陥である識別問題やバイアスに関する問題なく、より良いデータ共有プラクティスを可能にする。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
実際には、制御されたデータアクセスは、多くの産業や研究環境でデータプライバシを保護する主要な方法である。
我々は,FT-PrivacyScoreのプロトタイプを開発し,モデル微調整作業に参加する際のプライバシーリスクを効率よく定量的に推定できることを実証した。
論文 参考訳(メタデータ) (2024-10-30T02:41:26Z) - RASE: Efficient Privacy-preserving Data Aggregation against Disclosure Attacks for IoTs [2.1765174838950494]
センサデバイスが生み出すデータを収集・保護する新たなパラダイムについて検討する。
データアグリゲーションとプライバシ保護の共同設計に関するこれまでの研究は、信頼されたフュージョンセンターがプライバシ体制に準拠していることを前提としている。
本稿では,3段階の逐次手順,雑音付加,ランダムな置換,パラメータ推定に一般化可能な新しいパラダイム(RASE)を提案する。
論文 参考訳(メタデータ) (2024-05-31T15:21:38Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Privacy for Free: How does Dataset Condensation Help Privacy? [21.418263507735684]
私たちは、データセット凝縮(DC)が、プライベートデータ生成のために従来のデータジェネレータを置き換えるためのより良いソリューションであることも確認しています。
我々は、DC合成データの視覚的プライバシとメンバシップのプライバシを、損失ベースと最先端の可能性ベースのメンバシップ推論攻撃の両方を起動することによって実証的に検証する。
論文 参考訳(メタデータ) (2022-06-01T05:39:57Z) - Releasing survey microdata with exact cluster locations and additional
privacy safeguards [77.34726150561087]
本稿では,プライバシ保護を付加した独自のマイクロデータの有用性を活用した,代替的なマイクロデータ配信戦略を提案する。
当社の戦略は, 再識別の試みにおいても, 任意の属性に対する再識別リスクを60~80%削減する。
論文 参考訳(メタデータ) (2022-05-24T19:37:11Z) - HyObscure: Hybrid Obscuring for Privacy-Preserving Data Publishing [7.554593344695387]
データユーティリティを確保しながらプライバシリークを最小限に抑えることは、プライバシ保存データパブリッシングタスクにおけるデータホルダーにとって重要な問題である。
これまでのほとんどの研究は、1つの種類のデータにのみ関心を持ち、単一のオブスカー法に頼っている。
本研究は,一般化操作と難読化操作の両方を併用する場合に,プライバシ保護データ公開に関する試行的な研究を行う。
論文 参考訳(メタデータ) (2021-12-15T03:04:00Z) - Robbing the Fed: Directly Obtaining Private Data in Federated Learning
with Modified Models [56.0250919557652]
フェデレーション学習は、ユーザーのプライバシーと効率を高めるという約束で急速に人気を集めている。
ユーザプライバシに対する以前の攻撃はスコープが限られており、少数のデータポイントに集約されたグラデーション更新にはスケールしない。
共有モデルアーキテクチャの最小限ではあるが悪意のある変更に基づく新しい脅威モデルを導入する。
論文 参考訳(メタデータ) (2021-10-25T15:52:06Z) - Generating Higher-Fidelity Synthetic Datasets with Privacy Guarantees [34.01962235805095]
データアノテーションやインスペクションなど,一般的な機械学習開発タスクにおけるユーザのプライバシ向上の課題を考察する。
我々はベイズ微分プライバシーを、より優れたプライバシー利用トレードオフを提供しながら厳密な理論的保証を達成する手段として採用することを提案する。
論文 参考訳(メタデータ) (2020-03-02T16:23:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。