論文の概要: RASE: Efficient Privacy-preserving Data Aggregation against Disclosure Attacks for IoTs
- arxiv url: http://arxiv.org/abs/2405.20914v1
- Date: Fri, 31 May 2024 15:21:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 13:58:40.608691
- Title: RASE: Efficient Privacy-preserving Data Aggregation against Disclosure Attacks for IoTs
- Title(参考訳): RASE:IoTの開示攻撃に対する効果的なプライバシ保護データアグリゲーション
- Authors: Zuyan Wang, Jun Tao, Dika Zou,
- Abstract要約: センサデバイスが生み出すデータを収集・保護する新たなパラダイムについて検討する。
データアグリゲーションとプライバシ保護の共同設計に関するこれまでの研究は、信頼されたフュージョンセンターがプライバシ体制に準拠していることを前提としている。
本稿では,3段階の逐次手順,雑音付加,ランダムな置換,パラメータ推定に一般化可能な新しいパラダイム(RASE)を提案する。
- 参考スコア(独自算出の注目度): 2.1765174838950494
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing popular awareness of personal privacy raises the following quandary: what is the new paradigm for collecting and protecting the data produced by ever-increasing sensor devices. Most previous studies on co-design of data aggregation and privacy preservation assume that a trusted fusion center adheres to privacy regimes. Very recent work has taken steps towards relaxing the assumption by allowing data contributors to locally perturb their own data. Although these solutions withhold some data content to mitigate privacy risks, they have been shown to offer insufficient protection against disclosure attacks. Aiming at providing a more rigorous data safeguard for the Internet of Things (IoTs), this paper initiates the study of privacy-preserving data aggregation. We propose a novel paradigm (called RASE), which can be generalized into a 3-step sequential procedure, noise addition, followed by random permutation, and then parameter estimation. Specially, we design a differentially private randomizer, which carefully guides data contributors to obfuscate the truth. Then, a shuffler is employed to receive the noisy data from all data contributors. After that, it breaks the correct linkage between senders and receivers by applying a random permutation. The estimation phase involves using inaccurate data to calculate an approximate aggregate value. Extensive simulations are provided to explore the privacy-utility landscape of our RASE.
- Abstract(参考訳): 個人のプライバシーに対する認知度が高まっていることは、次の4つの原則を提起している。
データアグリゲーションとプライバシ保護の共同設計に関するこれまでの研究は、信頼されたフュージョンセンターがプライバシ体制に準拠していることを前提としている。
非常に最近の作業は、データコントリビュータが自身のデータをローカルに摂動させることによって、仮定を緩和するステップを取りました。
これらのソリューションは、プライバシーリスクを軽減するためにいくつかのデータコンテンツを保持しないが、開示攻撃に対する保護が不十分であることが示されている。
より厳格なIoT(Internet of Things)データ保護の提供を目的として,プライバシ保護データアグリゲーションの研究を開始する。
本稿では,3段階の逐次手順,雑音付加,ランダムな置換,パラメータ推定に一般化可能な新しいパラダイム(RASE)を提案する。
具体的には、データコントリビュータが真実を難読化するために慎重にガイドする、微分プライベートなランダム化器を設計する。
次に、シャフラーを使用して、すべてのデータコントリビュータからノイズの多いデータを受信する。
その後、ランダムな置換を適用することで、送信側と受信側の間の正しいリンクを断ち切る。
推定フェーズは、近似集約値を計算するために不正確なデータを使用する。
RASEのプライバシーユーティリティの展望を探るため、大規模なシミュレーションが提供されている。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
実際には、制御されたデータアクセスは、多くの産業や研究環境でデータプライバシを保護する主要な方法である。
我々は,FT-PrivacyScoreのプロトタイプを開発し,モデル微調整作業に参加する際のプライバシーリスクを効率よく定量的に推定できることを実証した。
論文 参考訳(メタデータ) (2024-10-30T02:41:26Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Releasing survey microdata with exact cluster locations and additional
privacy safeguards [77.34726150561087]
本稿では,プライバシ保護を付加した独自のマイクロデータの有用性を活用した,代替的なマイクロデータ配信戦略を提案する。
当社の戦略は, 再識別の試みにおいても, 任意の属性に対する再識別リスクを60~80%削減する。
論文 参考訳(メタデータ) (2022-05-24T19:37:11Z) - HyObscure: Hybrid Obscuring for Privacy-Preserving Data Publishing [7.554593344695387]
データユーティリティを確保しながらプライバシリークを最小限に抑えることは、プライバシ保存データパブリッシングタスクにおけるデータホルダーにとって重要な問題である。
これまでのほとんどの研究は、1つの種類のデータにのみ関心を持ち、単一のオブスカー法に頼っている。
本研究は,一般化操作と難読化操作の両方を併用する場合に,プライバシ保護データ公開に関する試行的な研究を行う。
論文 参考訳(メタデータ) (2021-12-15T03:04:00Z) - Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release [30.409342804445306]
本稿では,時系列データとスマートメータ(SM)電力消費測定の文脈における問題点について検討する。
我々は、考慮された設定において、より意味のあるプライバシーの尺度として、指向情報(DI)を導入します。
最悪のシナリオにおけるSMs測定による実世界のデータセットに関する実証的研究は、プライバシとユーティリティの既存のトレードオフを示している。
論文 参考訳(メタデータ) (2020-11-20T13:41:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。