Researchers eye-view of sarcasm detection in social media textual
content
- URL: http://arxiv.org/abs/2304.08582v1
- Date: Mon, 17 Apr 2023 19:45:10 GMT
- Title: Researchers eye-view of sarcasm detection in social media textual
content
- Authors: Swapnil Mane, Vaibhav Khatavkar
- Abstract summary: Enormous use of sarcastic text in all forms of communication in social media will have a physiological effect on target users.
This paper discusses various sarcasm detection techniques and concludes with some approaches, related datasets with optimal features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The enormous use of sarcastic text in all forms of communication in social
media will have a physiological effect on target users. Each user has a
different approach to misusing and recognising sarcasm. Sarcasm detection is
difficult even for users, and this will depend on many things such as
perspective, context, special symbols. So, that will be a challenging task for
machines to differentiate sarcastic sentences from non-sarcastic sentences.
There are no exact rules based on which model will accurately detect sarcasm
from many text corpus in the current situation. So, one needs to focus on
optimistic and forthcoming approaches in the sarcasm detection domain. This
paper discusses various sarcasm detection techniques and concludes with some
approaches, related datasets with optimal features, and the researcher's
challenges.
Related papers
- Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue [67.09698638709065]
We propose a novel sEntiment-enhanceD Graph-based multimodal sarcasm Explanation framework, named EDGE.
In particular, we first propose a lexicon-guided utterance sentiment inference module, where a utterance sentiment refinement strategy is devised.
We then develop a module named Joint Cross Attention-based Sentiment Inference (JCA-SI) by extending the multimodal sentiment analysis model JCA to derive the joint sentiment label for each video-audio clip.
arXiv Detail & Related papers (2024-02-06T03:14:46Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
We introduce HurricaneSARC, a dataset of 15,000 tweets annotated for intended sarcasm.
Our best model is able to obtain as much as 0.70 F1 on our dataset.
arXiv Detail & Related papers (2023-08-16T05:58:12Z) - Sarcasm Detection Framework Using Emotion and Sentiment Features [62.997667081978825]
We propose a model which incorporates emotion and sentiment features to capture the incongruity intrinsic to sarcasm.
Our approach achieved state-of-the-art results on four datasets from social networking platforms and online media.
arXiv Detail & Related papers (2022-11-23T15:14:44Z) - How to Describe Images in a More Funny Way? Towards a Modular Approach
to Cross-Modal Sarcasm Generation [62.89586083449108]
We study a new problem of cross-modal sarcasm generation (CMSG), i.e., generating a sarcastic description for a given image.
CMSG is challenging as models need to satisfy the characteristics of sarcasm, as well as the correlation between different modalities.
We propose an Extraction-Generation-Ranking based Modular method (EGRM) for cross-model sarcasm generation.
arXiv Detail & Related papers (2022-11-20T14:38:24Z) - Computational Sarcasm Analysis on Social Media: A Systematic Review [0.23488056916440855]
Sarcasm can be defined as saying or writing the opposite of what one truly wants to express, usually to insult, irritate, or amuse someone.
Because of the obscure nature of sarcasm in textual data, detecting it is difficult and of great interest to the sentiment analysis research community.
arXiv Detail & Related papers (2022-09-13T17:20:19Z) - Multimodal Learning using Optimal Transport for Sarcasm and Humor
Detection [76.62550719834722]
We deal with multimodal sarcasm and humor detection from conversational videos and image-text pairs.
We propose a novel multimodal learning system, MuLOT, which utilizes self-attention to exploit intra-modal correspondence.
We test our approach for multimodal sarcasm and humor detection on three benchmark datasets.
arXiv Detail & Related papers (2021-10-21T07:51:56Z) - sarcasm detection and quantification in arabic tweets [7.173484352846755]
This paper intends to create a new humanly annotated Arabic corpus for sarcasm detection collected from tweets.
The proposed approach tackles the problem as a regression problem instead of classification.
arXiv Detail & Related papers (2021-08-03T11:48:27Z) - Parallel Deep Learning-Driven Sarcasm Detection from Pop Culture Text
and English Humor Literature [0.76146285961466]
We manually extract the sarcastic word distribution features of a benchmark pop culture sarcasm corpus.
We generate input sequences formed of the weighted vectors from such words.
Our proposed model for detecting sarcasm peaks a training accuracy of 98.95% when trained with the discussed dataset.
arXiv Detail & Related papers (2021-06-10T14:01:07Z) - Bi-ISCA: Bidirectional Inter-Sentence Contextual Attention Mechanism for
Detecting Sarcasm in User Generated Noisy Short Text [8.36639545285691]
This paper proposes a new state-of-the-art deep learning architecture that uses a novel Bidirectional Inter-Sentence Contextual Attention mechanism (Bi-ISCA)
Bi-ISCA captures inter-sentence dependencies for detecting sarcasm in the user-generated short text using only the conversational context.
The proposed deep learning model demonstrates the capability to capture explicit, implicit, and contextual incongruous words & phrases responsible for invoking sarcasm.
arXiv Detail & Related papers (2020-11-23T15:24:27Z) - $R^3$: Reverse, Retrieve, and Rank for Sarcasm Generation with
Commonsense Knowledge [51.70688120849654]
We propose an unsupervised approach for sarcasm generation based on a non-sarcastic input sentence.
Our method employs a retrieve-and-edit framework to instantiate two major characteristics of sarcasm.
arXiv Detail & Related papers (2020-04-28T02:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.