論文の概要: Comparative analysis of segmentation and generative models for
fingerprint retrieval task
- arxiv url: http://arxiv.org/abs/2209.06172v1
- Date: Tue, 13 Sep 2022 17:21:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 12:40:07.708265
- Title: Comparative analysis of segmentation and generative models for
fingerprint retrieval task
- Title(参考訳): 指紋検索タスクにおけるセグメンテーションと生成モデルの比較分析
- Authors: Megh Patel, Devarsh Patel, Sarthak Patel
- Abstract要約: 指紋は、指が汚れたり、濡れたり、怪我したり、センサーが故障したりすると、品質が低下する。
本稿では,ジェネレーティブ(GAN)とモデルを用いた深層学習手法を提案する。
本研究は, GANネットワークよりも, u-net モデルの方が優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biometric Authentication like Fingerprints has become an integral part of the
modern technology for authentication and verification of users. It is pervasive
in more ways than most of us are aware of. However, these fingerprint images
deteriorate in quality if the fingers are dirty, wet, injured or when sensors
malfunction. Therefore, extricating the original fingerprint by removing the
noise and inpainting it to restructure the image is crucial for its
authentication. Hence, this paper proposes a deep learning approach to address
these issues using Generative (GAN) and Segmentation models. Qualitative and
Quantitative comparison has been done between pix2pixGAN and cycleGAN
(generative models) as well as U-net (segmentation model). To train the model,
we created our own dataset NFD - Noisy Fingerprint Dataset meticulously with
different backgrounds along with scratches in some images to make it more
realistic and robust. In our research, the u-net model performed better than
the GAN networks
- Abstract(参考訳): Fingerprintsのようなバイオメトリック認証は、ユーザの認証と検証のための現代技術の不可欠な部分となっている。
それは私たちのほとんどが認識しているよりも多くの点で広まります。
しかし、これらの指紋画像は、指が汚れたり、濡れたり、怪我したり、センサーが故障した場合、品質が低下する。
したがって、ノイズを取り除き、画像の再構成のために塗り替えることによる元の指紋の抽出はその認証に不可欠である。
そこで本稿では,ジェネレーティブ(GAN)モデルとセグメンテーションモデルを用いた深層学習手法を提案する。
pix2pixGANとCycleGAN(生成モデル)とU-net(セグメンテーションモデル)の質的および定量的比較が行われた。
モデルをトレーニングするために、私たちは独自のデータセットNFD - Noisy Fingerprint Datasetを、さまざまな背景と、いくつかの画像の傷を慎重に組み合わせて、より現実的で堅牢なものにしました。
我々の研究では、u-netモデルはGANネットワークよりも優れていた。
関連論文リスト
- ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object [78.58860252442045]
我々は、深層モデルの堅牢性をベンチマークするハードイメージのためのデータソースとして、生成モデルを紹介した。
このベンチマークを ImageNet-D と呼ぶ以前の作業よりも、背景、テクスチャ、材料が多様化したイメージを生成することができます。
我々の研究は、拡散モデルが視覚モデルをテストするのに効果的な情報源となることを示唆している。
論文 参考訳(メタデータ) (2024-03-27T17:23:39Z) - Enhancing Fingerprint Image Synthesis with GANs, Diffusion Models, and Style Transfer Techniques [0.44739156031315924]
我々は様々な方法でノイズからライブ指紋を生成し、画像翻訳技術を用いてライブ指紋画像をスプーフに変換する。
我々はFr'echet Inception Distance (FID) とFalse Acceptance Rate (FAR) によって生成されたライブ指紋画像の多様性と現実性を評価する。
論文 参考訳(メタデータ) (2024-03-20T18:36:30Z) - FPGAN-Control: A Controllable Fingerprint Generator for Training with
Synthetic Data [7.203557048672379]
画像生成フレームワークであるFPGAN-Controlについて述べる。
指紋の識別と外観特性の絡み合いを助長する新規な外観損失を導入する。
FPGAN-Controlのメリットを,アイデンティティレベル,外観制御の程度,合成ドメイン間ギャップの低さの観点から定量的かつ定性的に示す。
論文 参考訳(メタデータ) (2023-10-29T14:30:01Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
本稿では,生成逆数ネットワークとワンショット学習技術に基づく指紋識別手法を提案する。
まず,低画質の指紋画像を,指紋強調層に直接画素を向けて高レベルの指紋画像に変換するPix2Pixモデルを提案する。
第2に,指紋識別プロセスにおいて,各指紋を他の指紋と区別するために,ワンショット学習アプローチを用いた完全自動指紋特徴抽出モデルを構築した。
論文 参考訳(メタデータ) (2022-08-11T02:45:42Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
本稿では,指紋画像品質計算における既存手法について概説する。
また、9000個の指紋画像を含むMCYTデータベースを用いて、それらの選択を実装し、テストし、比較する。
論文 参考訳(メタデータ) (2022-07-12T10:34:03Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
指紋スプーフ検出の進歩に対する大きな制限は、公開可能な大規模な指紋スプーフデータセットの欠如である。
この研究は、これらのアルゴリズムに十分なデータを供給する際に、合成指紋(ライブ指紋とスプーフ指紋の両方)の有用性を実証することを目的としている。
論文 参考訳(メタデータ) (2022-04-13T16:27:27Z) - Synthesis and Reconstruction of Fingerprints using Generative
Adversarial Networks [6.700873164609009]
本稿では,StyleGan2アーキテクチャに基づく新しい指紋合成・再構成フレームワークを提案する。
また,生成した指紋の属性を同一性を保ちながら修正する計算手法も提案する。
提案手法は, 指紋合成と復元の両面において, 現代的手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-01-17T00:18:00Z) - Self-supervised GAN Detector [10.963740942220168]
生成モデルは 不正や 破壊 偽ニュースなど 悪意のある目的で悪用される
トレーニング設定外の未確認画像を識別する新しいフレームワークを提案する。
提案手法は,GAN画像の高品質な人工指紋を再構成する人工指紋生成装置から構成する。
論文 参考訳(メタデータ) (2021-11-12T06:19:04Z) - Fingerprinting Image-to-Image Generative Adversarial Networks [53.02510603622128]
Generative Adversarial Networks (GAN) は様々なアプリケーションシナリオで広く利用されている。
本稿では,信頼できる第三者に基づく画像間GANの知的保護のための新しい指紋認証方式を提案する。
論文 参考訳(メタデータ) (2021-06-19T06:25:10Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。