論文の概要: FPGAN-Control: A Controllable Fingerprint Generator for Training with
Synthetic Data
- arxiv url: http://arxiv.org/abs/2310.19024v1
- Date: Sun, 29 Oct 2023 14:30:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 14:48:13.893332
- Title: FPGAN-Control: A Controllable Fingerprint Generator for Training with
Synthetic Data
- Title(参考訳): FPGAN-Control: 合成データによるトレーニングのための制御可能な指紋生成装置
- Authors: Alon Shoshan, Nadav Bhonker, Emanuel Ben Baruch, Ori Nizan, Igor
Kviatkovsky, Joshua Engelsma, Manoj Aggarwal, Gerard Medioni
- Abstract要約: 画像生成フレームワークであるFPGAN-Controlについて述べる。
指紋の識別と外観特性の絡み合いを助長する新規な外観損失を導入する。
FPGAN-Controlのメリットを,アイデンティティレベル,外観制御の程度,合成ドメイン間ギャップの低さの観点から定量的かつ定性的に示す。
- 参考スコア(独自算出の注目度): 7.203557048672379
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Training fingerprint recognition models using synthetic data has recently
gained increased attention in the biometric community as it alleviates the
dependency on sensitive personal data. Existing approaches for fingerprint
generation are limited in their ability to generate diverse impressions of the
same finger, a key property for providing effective data for training
recognition models. To address this gap, we present FPGAN-Control, an identity
preserving image generation framework which enables control over the
fingerprint's image appearance (e.g., fingerprint type, acquisition device,
pressure level) of generated fingerprints. We introduce a novel appearance loss
that encourages disentanglement between the fingerprint's identity and
appearance properties. In our experiments, we used the publicly available NIST
SD302 (N2N) dataset for training the FPGAN-Control model. We demonstrate the
merits of FPGAN-Control, both quantitatively and qualitatively, in terms of
identity preservation level, degree of appearance control, and low
synthetic-to-real domain gap. Finally, training recognition models using only
synthetic datasets generated by FPGAN-Control lead to recognition accuracies
that are on par or even surpass models trained using real data. To the best of
our knowledge, this is the first work to demonstrate this.
- Abstract(参考訳): 合成データを用いた指紋認識モデルのトレーニングは、センシティブな個人データへの依存を軽減するため、バイオメトリックスコミュニティの注目を集めている。
指紋生成の既存のアプローチは、同一指の多様な印象を生成する能力に制限があり、これは認識モデルのトレーニングに有効なデータを提供するための重要な特性である。
このギャップに対処するために、生成された指紋の指紋の外観(指紋の種類、取得装置、圧力レベルなど)を制御できる識別保存画像生成フレームワークであるFPGAN-Controlを提案する。
指紋の同一性と外観特性を異にする新たな外観損失について紹介する。
実験では,NIST SD302データセットを用いてFPGAN-Controlモデルのトレーニングを行った。
FPGAN-Controlのメリットを,アイデンティティの保存レベル,外観制御の程度,合成ドメイン間ギャップの低さの観点から定量的かつ定性的に示す。
最後に、fpgan制御によって生成された合成データセットのみを使用した認識モデルのトレーニングは、実際のデータでトレーニングされたモデルと同等か、あるいは超えている認識確率に繋がる。
私たちの知る限りでは、これがこれを初めて実証する作業です。
関連論文リスト
- Universal Fingerprint Generation: Controllable Diffusion Model with Multimodal Conditions [25.738682467090335]
GenPrintは、アイデンティティを維持しながら、さまざまなタイプの指紋画像を生成するためのフレームワークである。
GenPrintはトレーニングデータセットのみからスタイル特性を複製することに限定されていない。
結果は、生成した画像のアイデンティティ保存、説明可能な制御、普遍性の観点から、GenPrintの利点を実証する。
論文 参考訳(メタデータ) (2024-04-21T23:01:08Z) - Synthetic Latent Fingerprint Generation Using Style Transfer [6.530917936319386]
そこで我々は,現実的な潜伏指紋を合成するために,スタイル転送と画像ブレンディングを用いたシンプルで効果的なアプローチを提案する。
評価基準と実験により,生成した合成潜伏指紋は,入力された接触指紋から識別情報を保存していることが示された。
論文 参考訳(メタデータ) (2023-09-27T15:47:00Z) - AFR-Net: Attention-Driven Fingerprint Recognition Network [47.87570819350573]
指紋認識を含む生体認証における視覚変換器(ViT)の使用に関する初期研究を改善する。
ネットワーク内の中間特徴マップから抽出した局所的な埋め込みを用いて,グローバルな埋め込みを低確かさで洗練する手法を提案する。
この戦略は、既存のディープラーニングネットワーク(アテンションベース、CNNベース、あるいはその両方を含む)のラッパーとして適用することで、パフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2022-11-25T05:10:39Z) - Comparative analysis of segmentation and generative models for
fingerprint retrieval task [0.0]
指紋は、指が汚れたり、濡れたり、怪我したり、センサーが故障したりすると、品質が低下する。
本稿では,ジェネレーティブ(GAN)とモデルを用いた深層学習手法を提案する。
本研究は, GANネットワークよりも, u-net モデルの方が優れた性能を示した。
論文 参考訳(メタデータ) (2022-09-13T17:21:14Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
指紋スプーフ検出の進歩に対する大きな制限は、公開可能な大規模な指紋スプーフデータセットの欠如である。
この研究は、これらのアルゴリズムに十分なデータを供給する際に、合成指紋(ライブ指紋とスプーフ指紋の両方)の有用性を実証することを目的としている。
論文 参考訳(メタデータ) (2022-04-13T16:27:27Z) - Synthesis and Reconstruction of Fingerprints using Generative
Adversarial Networks [6.700873164609009]
本稿では,StyleGan2アーキテクチャに基づく新しい指紋合成・再構成フレームワークを提案する。
また,生成した指紋の属性を同一性を保ちながら修正する計算手法も提案する。
提案手法は, 指紋合成と復元の両面において, 現代的手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-01-17T00:18:00Z) - Federated Test-Time Adaptive Face Presentation Attack Detection with
Dual-Phase Privacy Preservation [100.69458267888962]
顔提示攻撃検出(fPAD)は、現代の顔認識パイプラインにおいて重要な役割を果たす。
法的およびプライバシー上の問題により、トレーニングデータ(実際の顔画像と偽画像)は、異なるデータソース間で直接共有することはできない。
本稿では,二相プライバシー保護フレームワークを用いたフェデレーションテスト時間適応顔提示検出を提案する。
論文 参考訳(メタデータ) (2021-10-25T02:51:05Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。