HistoPerm: A Permutation-Based View Generation Approach for Improving
Histopathologic Feature Representation Learning
- URL: http://arxiv.org/abs/2209.06185v2
- Date: Wed, 5 Apr 2023 21:33:36 GMT
- Title: HistoPerm: A Permutation-Based View Generation Approach for Improving
Histopathologic Feature Representation Learning
- Authors: Joseph DiPalma, Lorenzo Torresani, Saeed Hassanpour
- Abstract summary: HistoPerm is a view generation method for representation learning using joint embedding architectures.
HistoPerm permutes augmented views of patches extracted from whole-slide histology images to improve classification performance.
Our results show that HistoPerm consistently improves patch- and slide-level classification performance in terms of accuracy, F1-score, and AUC.
- Score: 33.1098457952173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been effective for histology image analysis in digital
pathology. However, many current deep learning approaches require large,
strongly- or weakly-labeled images and regions of interest, which can be
time-consuming and resource-intensive to obtain. To address this challenge, we
present HistoPerm, a view generation method for representation learning using
joint embedding architectures that enhances representation learning for
histology images. HistoPerm permutes augmented views of patches extracted from
whole-slide histology images to improve classification performance. We
evaluated the effectiveness of HistoPerm on two histology image datasets for
Celiac disease and Renal Cell Carcinoma, using three widely used joint
embedding architecture-based representation learning methods: BYOL, SimCLR, and
VICReg. Our results show that HistoPerm consistently improves patch- and
slide-level classification performance in terms of accuracy, F1-score, and AUC.
Specifically, for patch-level classification accuracy on the Celiac disease
dataset, HistoPerm boosts BYOL and VICReg by 8% and SimCLR by 3%. On the Renal
Cell Carcinoma dataset, patch-level classification accuracy is increased by 2%
for BYOL and VICReg, and by 1% for SimCLR. In addition, on the Celiac disease
dataset, models with HistoPerm outperform the fully-supervised baseline model
by 6%, 5%, and 2% for BYOL, SimCLR, and VICReg, respectively. For the Renal
Cell Carcinoma dataset, HistoPerm lowers the classification accuracy gap for
the models up to 10% relative to the fully-supervised baseline. These findings
suggest that HistoPerm can be a valuable tool for improving representation
learning of histopathology features when access to labeled data is limited and
can lead to whole-slide classification results that are comparable to or
superior to fully-supervised methods.
Related papers
- Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training [3.2646075700744928]
Histo whole slide images (WSIs) are being widely used to develop deep learning-based diagnostic solutions, especially for precision oncology.
Most of these diagnostic softwares are vulnerable to biases and impurities in the training and test data which can lead to inaccurate diagnoses.
We introduce HistoROI, a robust yet lightweight deep learning-based classifier to segregate WSI into six broad tissue regions.
arXiv Detail & Related papers (2024-09-29T07:08:45Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Histopathologic Cancer Detection [0.0]
This work uses the PatchCamelyon benchmark datasets and trains them in a multi-layer perceptron and convolution model to observe the model's performance in terms of precision Recall, F1 Score, Accuracy, and AUC Score.
Also, this paper introduced ResNet50 and InceptionNet models with data augmentation, where ResNet50 is able to beat the state-of-the-art model.
arXiv Detail & Related papers (2023-11-13T19:51:46Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD
classification directly from H&E whole-slide images in colorectal and breast
cancer [22.46523830554047]
We propose a Deep learning-based weak label learning method for analyzing whole slide images (WSIs) of Hematoxylin and Eosin stained tumor tissue.
We apply DeepSMILE to the task of Homologous recombination deficiency (HRD) and microsatellite instability (MSI) prediction.
arXiv Detail & Related papers (2021-07-20T11:00:16Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Representation Learning of Histopathology Images using Graph Neural
Networks [12.427740549056288]
We propose a two-stage framework for WSI representation learning.
We sample relevant patches using a color-based method and use graph neural networks to learn relations among sampled patches to aggregate the image information into a single vector representation.
We demonstrate the performance of our approach for discriminating two sub-types of lung cancers, Lung Adenocarcinoma (LUAD) & Lung Squamous Cell Carcinoma (LUSC)
arXiv Detail & Related papers (2020-04-16T00:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.