Histopathologic Cancer Detection
- URL: http://arxiv.org/abs/2311.07711v1
- Date: Mon, 13 Nov 2023 19:51:46 GMT
- Title: Histopathologic Cancer Detection
- Authors: Varan Singh Rohila, Neeraj Lalwani, Lochan Basyal
- Abstract summary: This work uses the PatchCamelyon benchmark datasets and trains them in a multi-layer perceptron and convolution model to observe the model's performance in terms of precision Recall, F1 Score, Accuracy, and AUC Score.
Also, this paper introduced ResNet50 and InceptionNet models with data augmentation, where ResNet50 is able to beat the state-of-the-art model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early diagnosis of the cancer cells is necessary for making an effective
treatment plan and for the health and safety of a patient. Nowadays, doctors
usually use a histological grade that pathologists determine by performing a
semi-quantitative analysis of the histopathological and cytological features of
hematoxylin-eosin (HE) stained histopathological images. This research
contributes a potential classification model for cancer prognosis to
efficiently utilize the valuable information underlying the HE-stained
histopathological images. This work uses the PatchCamelyon benchmark datasets
and trains them in a multi-layer perceptron and convolution model to observe
the model's performance in terms of precision, Recall, F1 Score, Accuracy, and
AUC Score. The evaluation result shows that the baseline convolution model
outperforms the baseline MLP model. Also, this paper introduced ResNet50 and
InceptionNet models with data augmentation, where ResNet50 is able to beat the
state-of-the-art model. Furthermore, the majority vote and concatenation
ensemble were evaluated and provided the future direction of using transfer
learning and segmentation to understand the specific features.
Related papers
- Comparative Analysis of Transfer Learning Models for Breast Cancer Classification [10.677937909900486]
This study investigates the efficiency of deep learning models in distinguishing between Invasive Ductal Carcinoma (IDC) and non-IDC in histopathology slides.
We conducted a comparison examination of eight sophisticated models: ResNet-50, DenseNet-121, ResNeXt-50, Vision Transformer (ViT), GoogLeNet (Inception v3), EfficientNet, MobileNet, and SqueezeNet.
arXiv Detail & Related papers (2024-08-29T18:49:32Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Cell Maps Representation For Lung Adenocarcinoma Growth Patterns Classification In Whole Slide Images [0.5906576076342179]
Lung adenocarcinoma is a morphologically heterogeneous disease, characterized by five primary histologic growth patterns.
We propose a novel machine learning pipeline capable of classifying tissue tiles into one of the five patterns or as non-tumor.
arXiv Detail & Related papers (2023-11-27T14:12:51Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - CoNIC Challenge: Pushing the Frontiers of Nuclear Detection,
Segmentation, Classification and Counting [46.45578907156356]
We setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition.
We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue.
Our findings suggest that nuclei and eosinophils play an important role in the tumour microevironment.
arXiv Detail & Related papers (2023-03-11T01:21:13Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.