Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training
- URL: http://arxiv.org/abs/2409.19587v1
- Date: Sun, 29 Sep 2024 07:08:45 GMT
- Title: Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training
- Authors: Abhijeet Patil, Harsh Diwakar, Jay Sawant, Nikhil Cherian Kurian, Subhash Yadav, Swapnil Rane, Tripti Bameta, Amit Sethi,
- Abstract summary: Histo whole slide images (WSIs) are being widely used to develop deep learning-based diagnostic solutions, especially for precision oncology.
Most of these diagnostic softwares are vulnerable to biases and impurities in the training and test data which can lead to inaccurate diagnoses.
We introduce HistoROI, a robust yet lightweight deep learning-based classifier to segregate WSI into six broad tissue regions.
- Score: 3.2646075700744928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Histopathology whole slide images (WSIs) are being widely used to develop deep learning-based diagnostic solutions, especially for precision oncology. Most of these diagnostic softwares are vulnerable to biases and impurities in the training and test data which can lead to inaccurate diagnoses. For instance, WSIs contain multiple types of tissue regions, at least some of which might not be relevant to the diagnosis. We introduce HistoROI, a robust yet lightweight deep learning-based classifier to segregate WSI into six broad tissue regions -- epithelium, stroma, lymphocytes, adipose, artifacts, and miscellaneous. HistoROI is trained using a novel human-in-the-loop and active learning paradigm that ensures variations in training data for labeling-efficient generalization. HistoROI consistently performs well across multiple organs, despite being trained on only a single dataset, demonstrating strong generalization. Further, we have examined the utility of HistoROI in improving the performance of downstream deep learning-based tasks using the CAMELYON breast cancer lymph node and TCGA lung cancer datasets. For the former dataset, the area under the receiver operating characteristic curve (AUC) for metastasis versus normal tissue of a neural network trained using weakly supervised learning increased from 0.88 to 0.92 by filtering the data using HistoROI. Similarly, the AUC increased from 0.88 to 0.93 for the classification between adenocarcinoma and squamous cell carcinoma on the lung cancer dataset. We also found that the performance of the HistoROI improves upon HistoQC for artifact detection on a test dataset of 93 annotated WSIs. The limitations of the proposed model are analyzed, and potential extensions are also discussed.
Related papers
- Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool [0.40205899806543505]
Deep-BCR-Auto is a deep learning-based computational pathology approach that predicts breast cancer recurrence risk.
Our methodology was validated on two independent cohorts.
Deep-BCR-Auto demonstrated robust performance in stratifying patients into low- and high-recurrence risk categories.
arXiv Detail & Related papers (2024-09-23T19:22:06Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - A Diagnostic Model for Acute Lymphoblastic Leukemia Using Metaheuristics and Deep Learning Methods [6.318593483920089]
Acute lymphoblastic leukemia (ALL) severity is determined by the presence and ratios of blast cells.
In this paper, a ResNet-based feature extractor is utilized to detect ALL, along with a variety of feature selectors and classifiers.
This technique got an impressive 90.71% accuracy and 95.76% sensitivity for the relevant classifications, and its metrics on this dataset outperformed others.
arXiv Detail & Related papers (2024-06-02T13:25:44Z) - Deep Learning-Based Segmentation of Tumors in PET/CT Volumes: Benchmark of Different Architectures and Training Strategies [0.12301374769426145]
This study examines various neural network architectures and training strategies for automatically segmentation of cancer lesions.
V-Net and nnU-Net models were the most effective for their respective datasets.
Eliminating cancer-free cases from the AutoPET dataset was found to improve the performance of most models.
arXiv Detail & Related papers (2024-04-15T13:03:42Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework
for patient-level colorectal cancer molecular subtypes classification from
H\&E stained images [45.32169712547367]
We introduce CIMIL-CRC', a framework that solves the MSI/MSS MIL problem by efficiently combining a pre-trained feature extraction model with principal component analysis (PCA) to aggregate information from all patches.
We assessed our CIMIL-CRC method using the average area under the curve (AUC) from a 5-fold cross-validation experimental setup for model development on the TCGA-CRC-DX cohort.
arXiv Detail & Related papers (2024-01-29T12:56:11Z) - Deep learning in computed tomography pulmonary angiography imaging: a
dual-pronged approach for pulmonary embolism detection [0.0]
The aim of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis (CAD) of Pulmonary Embolism (PE)
Our classification system includes an Attention-Guided Convolutional Neural Network (AG-CNN) that uses local context by employing an attention mechanism.
AG-CNN achieves robust performance on the FUMPE dataset, achieving an AUROC of 0.927, sensitivity of 0.862, specificity of 0.879, and an F1-score of 0.805 with the Inception-v3 backbone architecture.
arXiv Detail & Related papers (2023-11-09T08:23:44Z) - Meta-information-aware Dual-path Transformer for Differential Diagnosis
of Multi-type Pancreatic Lesions in Multi-phase CT [41.199716328468895]
We develop a dual-path transformer to exploit the feasibility of classification and segmentation of pancreatic lesions.
The proposed method consists of a CNN-based segmentation path (S-path) and a transformer-based classification path (C-path)
Our results show that our method can enable accurate classification and segmentation of the full taxonomy of pancreatic lesions.
arXiv Detail & Related papers (2023-03-02T03:34:28Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - EGFR Mutation Prediction of Lung Biopsy Images using Deep Learning [1.793983482813105]
In this work, we used customized deep learning pipelines with weak supervision to identify the morphological correlates of EGFR mutation.
With our pipeline, we achieved an average area under the curve (AUC) of 0.964 for tumor detection, and 0.942 for histological subtyping between adenocarcinoma and squamous cell carcinoma.
For EGFR detection, we achieved an average AUC of 0.864 on the TCGA dataset and 0.783 on the dataset from India.
arXiv Detail & Related papers (2022-08-26T08:56:33Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.