Universal measurement-based quantum computation in a one-dimensional architecture enabled by dual-unitary circuits
- URL: http://arxiv.org/abs/2209.06191v2
- Date: Thu, 16 May 2024 05:36:29 GMT
- Title: Universal measurement-based quantum computation in a one-dimensional architecture enabled by dual-unitary circuits
- Authors: David T. Stephen, Wen Wei Ho, Tzu-Chieh Wei, Robert Raussendorf, Ruben Verresen,
- Abstract summary: We show that applying a dual-unitary circuit to a many-body state followed by appropriate measurements effectively implements quantum computation in the spatial direction.
Our protocol allows generic quantum circuits to be rotated' in space-time and gives new ways to exchange between resources like qubit number and coherence time in quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A powerful tool emerging from the study of many-body quantum dynamics is that of dual-unitary circuits, which are unitary even when read `sideways', i.e., along the spatial direction. Here, we show that this provides the ideal framework to understand and expand on the notion of measurement-based quantum computation (MBQC). In particular, applying a dual-unitary circuit to a many-body state followed by appropriate measurements effectively implements quantum computation in the spatial direction. We show how the dual-unitary dynamics generated by the dynamics of the paradigmatic one-dimensional kicked Ising chain with certain parameter choices generate resource states for universal deterministic MBQC. Specifically, after $k$ time-steps, equivalent to a depth-$k$ quantum circuit, we obtain a resource state for universal MBQC on $\sim 3k/4$ encoded qubits. Our protocol allows generic quantum circuits to be `rotated' in space-time and gives new ways to exchange between resources like qubit number and coherence time in quantum computers. Beyond the practical advantages, we also interpret the dual-unitary evolution as generating an infinite sequence of new symmetry-protected topological phases with spatially modulated symmetries, which gives a vast generalization of the well-studied one-dimensional cluster state and shows that our protocol is robust to symmetry-respecting deformations.
Related papers
- Scalable quantum dynamics compilation via quantum machine learning [7.31922231703204]
variational quantum compilation (VQC) methods employ variational optimization to reduce gate costs while maintaining high accuracy.
We show that our approach exceeds state-of-the-art compilation results in both system size and accuracy in one dimension ($1$D)
For the first time, we extend VQC to systems on two-dimensional (2D) strips with a quasi-1D treatment, demonstrating a significant resource advantage over standard Trotterization methods.
arXiv Detail & Related papers (2024-09-24T18:00:00Z) - Entanglement dynamics in monitored Kitaev circuits: loop models, symmetry classification, and quantum Lifshitz scaling [0.0]
Quantum circuits offer a versatile platform for simulating digital quantum dynamics.
We show that monitored quantum circuits yield robust phases of dynamic matter.
Our work further solidifies the concept of emergent circuit phases and their phase transitions.
arXiv Detail & Related papers (2024-09-03T18:00:01Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Geometric Quantum Machine Learning with Horizontal Quantum Gates [41.912613724593875]
We propose an alternative paradigm for the symmetry-informed construction of variational quantum circuits.
We achieve this by introducing horizontal quantum gates, which only transform the state with respect to the directions to those of the symmetry.
For a particular subclass of horizontal gates based on symmetric spaces, we can obtain efficient circuit decompositions for our gates through the KAK theorem.
arXiv Detail & Related papers (2024-06-06T18:04:39Z) - Mapping quantum circuits to shallow-depth measurement patterns based on
graph states [0.0]
We create a hybrid simulation technique for measurement-based quantum computing.
We show that groups of fully commuting operators can be implemented using fully-parallel, i.e., non-adaptive, measurements.
We discuss how such circuits can be implemented in constant quantum depths by employing quantum teleportation.
arXiv Detail & Related papers (2023-11-27T19:00:00Z) - Quantum Signal Processing with the one-dimensional quantum Ising model [0.0]
Quantum Signal Processing (QSP) has emerged as a promising framework to manipulate and determine properties of quantum systems.
We provide examples and applications of our approach in diverse fields ranging from space-time dual quantum circuits and quantum simulation, to quantum control.
arXiv Detail & Related papers (2023-09-08T18:01:37Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum control using quantum memory [0.0]
We propose a new quantum numerical scheme to control the dynamics of a quantum walker in a two dimensional space-time grid.
We show how, introducing a quantum memory for each of the spatial grid, this result can be achieved simply by acting on the initial state of the whole system.
arXiv Detail & Related papers (2020-09-22T09:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.