Nonreciprocal devices based on voltage-tunable junctions
- URL: http://arxiv.org/abs/2209.06194v1
- Date: Tue, 13 Sep 2022 17:49:19 GMT
- Title: Nonreciprocal devices based on voltage-tunable junctions
- Authors: Catherine Leroux, Adrian Parra-Rodriguez, Ross Shillito, Agustin Di
Paolo, William D. Oliver, Charles M. Marcus, Morten Kjaergaard, Andr\'as
Gyenis and Alexandre Blais
- Abstract summary: We propose to couple the flux degree of freedom of one mode with the charge degree of freedom of a second mode in a hybrid superconducting-semiconducting architecture.
Nonreciprocity can arise in this architecture in the presence of external static magnetic fields alone.
- Score: 48.7576911714538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose to couple the flux degree of freedom of one mode with the charge
degree of freedom of a second mode in a hybrid superconducting-semiconducting
architecture. Nonreciprocity can arise in this architecture in the presence of
external static magnetic fields alone. We leverage this property to engineer a
passive on-chip gyrator, the fundamental two-port nonreciprocal device which
can be used to build other nonreciprocal devices such as circulators. We
analytically and numerically investigate how the nonlinearity of the
interaction, circuit disorder and parasitic couplings affect the scattering
response of the gyrator.
Related papers
- Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Efficient decoupling of a non-linear qubit mode from its environment [0.9533143628888118]
We make use of the design flexibility of superconducting quantum circuits to form a multi-mode element with symmetry-protected modes.
The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions.
We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator.
arXiv Detail & Related papers (2023-12-28T12:16:29Z) - Toolbox for nonreciprocal dispersive models in circuit QED [41.94295877935867]
We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system.
Results can be used for the design of complex superconducting quantum processors with nontrivial routing of quantum information, as well as quantum simulators of condensed matter systems.
arXiv Detail & Related papers (2023-12-13T18:44:55Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Canonical quantisation of telegrapher's equations coupled by ideal
nonreciprocal elements [0.0]
We develop a systematic procedure to quantise canonically Hamiltonians of light-matter models of transmission lines.
We prove that this apparent redundancy is required for the general derivation of the Hamiltonian for a wider class of networks.
This theory enhances the quantum engineering toolbox to design complex networks with nonreciprocal elements.
arXiv Detail & Related papers (2020-10-23T17:56:02Z) - Vortex-Meissner phase transition induced by two-tone-drive-engineered
artificial gauge potential in the fermionic ladder constructed by
superconducting qubit circuits [3.850637512459572]
Two-tone drives can be used to engineer artificial gauge potential.
Fermionic ladder model penetrated with magnetic flux can be constructed by superconducting flux qubits.
arXiv Detail & Related papers (2020-03-24T03:35:29Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.