Circulators based on Coupled Quantum Anomalous Hall Insulators and Resonators
- URL: http://arxiv.org/abs/2505.07770v1
- Date: Mon, 12 May 2025 17:21:43 GMT
- Title: Circulators based on Coupled Quantum Anomalous Hall Insulators and Resonators
- Authors: Luis A. Martinez, Nick Du, Nicholas Materise, Sean O' Kelley, Xian Wu, Gang Qiu, Kang L. Wang, P. Gianpaolo, Tony Low, Dong-Xia Qu,
- Abstract summary: Integrated plasmonics is advancing rapidly, enabling a wide range of functionalities to be incorporated onto a single chip.<n>Non-reciprocal devices are essential for preventing unwanted feedback that can degrade system performance.<n>Here, we demonstrate that topological circulators utilizing asymmetric coupling offer improved input power range, isolation, and insertion loss.
- Score: 19.42533070986258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrated plasmonics is advancing rapidly, enabling a wide range of functionalities to be incorporated onto a single chip. Applications span information processing, computation, quantum sensing, and dark-matter detection. This progress has driven the development of integrated non-reciprocal devices, which are essential for preventing unwanted feedback that can degrade system performance. While non-reciprocal devices have been realized in edge magnetoplasmon materials via classical interference effects, their operation is often complicated by a dependence on input power. Here, we demonstrate that topological circulators utilizing asymmetric coupling offer improved input power range, isolation, and insertion loss. In this configuration, non-reciprocal behavior arises from the coupling between a chiral edge magnetoplasmonic resonator and LC resonators, leading to non-Hermitian dynamics. The coherent photon-plasmon interaction enables a circulator with up to 50 dB of isolation across a broad range of excitation intensities. This is the first experimental demonstration showing that magnetic topological insulators can support the study of chiral plasmonic cavity quantum electrodynamics at radio frequencies, underscoring their potential to enable chip-scale quantum-classical interfaces in superconducting quantum information processing systems.
Related papers
- In-situ tunable interaction with an invertible sign between a fluxonium and a post cavity [0.0]
nonlinearity is introduced to a cavity mode through an ancillary two-level qubit.<n>The ancilla's spurious heating has impeded progress towards fully fault-tolerant bosonic qubits.<n>This work presents a novel architecture for quantum information processing, comprising a 3D post cavity coupled to a fluxonium ancilla via a readout resonator.
arXiv Detail & Related papers (2024-09-11T20:49:36Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Steady-state dynamics and non-local correlations in thermoelectric Cooper pair splitters [43.62395775086322]
Recent experiments on Cooper pair splitters using superconductor-quantum dot hybrids have embarked on creating entanglement in the solid-state.<n>We present a comprehensive analysis of the fundamental components of the observed transport signal.<n>Our work provides detailed insights into the gate voltage control of the quantum correlations in superconducting-hybrid Cooper pair splitters.
arXiv Detail & Related papers (2024-06-10T06:46:10Z) - Toolbox for nonreciprocal dispersive models in circuit QED [41.94295877935867]
We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system.
Results can be used for the design of complex superconducting quantum processors with nontrivial routing of quantum information, as well as quantum simulators of condensed matter systems.
arXiv Detail & Related papers (2023-12-13T18:44:55Z) - Efficient Quantum Transduction Using Anti-Ferromagnetic Topological Insulators [10.115394047612014]
In this work, we discuss some general principles for quantum transducer design.
We then propose solid-state anti-ferromagnetic topological insulators to serve as particularly effective transducers.
arXiv Detail & Related papers (2023-08-17T15:30:16Z) - Many-body cavity quantum electrodynamics with driven inhomogeneous
emitters [2.745127037087037]
We study how a large, inhomogeneously broadened ensemble of solid-state emitters coupled with high cooperativity to a nanophotonic resonator behaves under strong excitation.
We discover a sharp, collectively induced transparency (CIT) in the cavity reflection spectrum, resulting from quantum interference and collective response induced by the interplay between driven inhomogeneous emitters and cavity photons.
These phenomena in the many-body cQED regime enable new mechanisms for achieving slow light and frequency referencing, pave a way towards solid-state superradiant lasers and inform the development of ensemble-based quantum interconnects.
arXiv Detail & Related papers (2022-08-08T18:06:08Z) - Resonant tunneling diodes in semiconductor microcavities: modeling
polaritonic features in the THz displacement current [0.0]
The effect of the quantized electromagnetic field in the displacement current of a resonant tunneling diode is analyzed.
This mimics known effects predicted by a Jaynes-Cummings model in closed systems.
The computational burden involved in the multi-time measurements of THz currents is tackled by invoking a Bohmian description of the light-matter interaction.
arXiv Detail & Related papers (2022-04-27T10:51:03Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Integrated quantum polariton interferometry [0.0]
We show that integrated circuits of single polaritons can be arranged to build deterministic quantum logic gates.
Our results introduce a novel paradigm for the development of practical quantum polaritonic devices.
arXiv Detail & Related papers (2021-07-28T14:09:23Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.