Multifunctional Nonreciprocal Quantum Device Based on Superconducting Quantum Circuit
- URL: http://arxiv.org/abs/2503.06544v1
- Date: Sun, 09 Mar 2025 10:31:46 GMT
- Title: Multifunctional Nonreciprocal Quantum Device Based on Superconducting Quantum Circuit
- Authors: Yue Cai, Jie Liu, Kang-Jie Ma, Lei Tan,
- Abstract summary: We design a multifunctional nonreciprocal quantum device based on the integration and tunable interaction of superconducting quantum circuit.<n>Both isolator and circulator can achieve nearly perfect unidirectional signal transmission.
- Score: 5.647025094433548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonreciprocal devices, such as isolator or circulator, are crucial for information routing and processing in quantum networks. Traditional nonreciprocal devices, which rely on the application of bias magnetic fields to break time-reversal symmetry and Lorentz reciprocity, tend to be bulky and require strong static magnetic fields. This makes them challenging to implement in highly integrated large-scale quantum networks. Therefore, we design a multifunctional nonreciprocal quantum device based on the integration and tunable interaction of superconducting quantum circuit. This device can switch between two-port isolator, three-port symmetric circulator, and antisymmetric circulator under the control of external magnetic flux. Furthermore, both isolator and circulator can achieve nearly perfect unidirectional signal transmission. We believe that this scalable and integrable nonreciprocal device could provide new insight for the development of large-scale quantum networks.
Related papers
- Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Parametrically controlled chiral interface for superconducting quantum devices [0.0]
Nonreciprocal microwave routing plays a crucial role for measuring quantum circuits.
Ferrite-based circulators suffer from excess loss, a large footprint, and fixed directionality.
Here, we report the design and experimental realization of a minimal controllable directional interface.
arXiv Detail & Related papers (2024-05-23T22:15:40Z) - Toolbox for nonreciprocal dispersive models in circuit QED [41.94295877935867]
We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system.
Results can be used for the design of complex superconducting quantum processors with nontrivial routing of quantum information, as well as quantum simulators of condensed matter systems.
arXiv Detail & Related papers (2023-12-13T18:44:55Z) - Efficient Quantum Transduction Using Anti-Ferromagnetic Topological Insulators [10.115394047612014]
In this work, we discuss some general principles for quantum transducer design.
We then propose solid-state anti-ferromagnetic topological insulators to serve as particularly effective transducers.
arXiv Detail & Related papers (2023-08-17T15:30:16Z) - Fano-Qubits for Quantum Devices with Enhanced Isolation and Bandwidth [0.6105362142646117]
Magneto-optical isolators and circulators have been widely used to safeguard quantum devices from reflections and noise in the readout stage.
We propose a new approach to quantum non-reciprocity that utilizes the intrinsic nonlinearity of qubits and broken spatial symmetry.
We show that a circuit containing Lorentz-type qubits can be transformed into Fano-type qubits with an asymmetric spectral response.
arXiv Detail & Related papers (2023-03-17T22:43:52Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Microwave Quantum Link between Superconducting Circuits Housed in
Spatially Separated Cryogenic Systems [43.55994393060723]
We report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters.
We transfer qubit states and generate entanglement on-demand with average transfer and target state fidelities of 85.8 % and 79.5 %, respectively.
arXiv Detail & Related papers (2020-08-04T15:36:51Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Dissipation-engineering of nonreciprocal quantum dot circuits: An
input-output approach [6.211723927647019]
Nonreciprocal effects in nanoelectronic devices offer unique possibilities for manipulating electron transport and engineering quantum electronic circuits.
We provide a general input-output description of nonreciprocal transport in solid-state quantum dot architectures.
We show that a nonreciprocal coupling induces unidirectional electron flow in the resonant transport regime.
arXiv Detail & Related papers (2020-04-11T14:13:14Z) - Synthesizing three-body interaction of spin chirality with
superconducting qubits [10.567608076469087]
We propose and experimentally synthesize the three-body spin-chirality interaction in a superconducting circuit based on Floquet engineering.
Our result is a step toward engineering dynamical and many-body interactions in multiqubit superconducting devices.
arXiv Detail & Related papers (2020-02-05T19:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.