論文の概要: Self-Supervised Clustering on Image-Subtracted Data with Deep-Embedded
Self-Organizing Map
- arxiv url: http://arxiv.org/abs/2209.06375v1
- Date: Wed, 14 Sep 2022 02:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-15 13:56:27.206511
- Title: Self-Supervised Clustering on Image-Subtracted Data with Deep-Embedded
Self-Organizing Map
- Title(参考訳): 深層埋め込み自己組織化マップを用いた画像抽出データの自己監視クラスタリング
- Authors: Y. -L. Mong, K. Ackley, T. L. Killestein, D. K. Galloway, M. Dyer, R.
Cutter, M. J. I. Brown, J. Lyman, K. Ulaczyk, D. Steeghs, V. Dhillon, P.
O'Brien, G. Ramsay, K. Noysena, R. Kotak, R. Breton, L. Nuttall, E. Palle, D.
Pollacco, E. Thrane, S. Awiphan, U. Burhanudin, P. Chote, A. Chrimes, E. Daw,
C. Duffy, R. Eyles-Ferris, B. P. Gompertz, T. Heikkila, P. Irawati, M.
Kennedy, A. Levan, S. Littlefair, L. Makrygianni, T. Marsh, D. Mata Sanchez,
S. Mattila, J. R. Maund, J. McCormac, D. Mkrtichian, J. Mullaney, E. Rol, U.
Sawangwit, E. Stanway, R. Starling, P. Strom, S. Tooke, K. Wiersema
- Abstract要約: 自己教師型機械学習モデルであるdeep-embedded self-organizing map (DESOM)を実ボガス分類問題に適用する。
我々は異なるモデルトレーニング手法を実証し、最良のDESOM分類器は検出率6.6%、偽陽性率1.5%を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing an effective automatic classifier to separate genuine sources from
artifacts is essential for transient follow-ups in wide-field optical surveys.
The identification of transient detections from the subtraction artifacts after
the image differencing process is a key step in such classifiers, known as
real-bogus classification problem. We apply a self-supervised machine learning
model, the deep-embedded self-organizing map (DESOM) to this "real-bogus"
classification problem. DESOM combines an autoencoder and a self-organizing map
to perform clustering in order to distinguish between real and bogus
detections, based on their dimensionality-reduced representations. We use 32x32
normalized detection thumbnails as the input of DESOM. We demonstrate different
model training approaches, and find that our best DESOM classifier shows a
missed detection rate of 6.6% with a false positive rate of 1.5%. DESOM offers
a more nuanced way to fine-tune the decision boundary identifying likely real
detections when used in combination with other types of classifiers, for
example built on neural networks or decision trees. We also discuss other
potential usages of DESOM and its limitations.
- Abstract(参考訳): 広視野光学サーベイの過渡的追従には,実物と人工物を切り離す効果的な自動分類器の開発が不可欠である。
画像差分処理後の減算アーティファクトからの過渡検出の同定は、実ボグス分類問題として知られる分類器において重要なステップである。
自己教師付き機械学習モデルである深層埋め込み型自己組織化マップ(desom)を,この"リアルボガス"分類問題に適用する。
desomはオートエンコーダと自己組織化マップを組み合わせることで、実際の検出とボガス検出を区別するためにクラスタリングを行う。
我々はDESOMの入力として32x32正規化検出サムネイルを用いる。
我々は異なるモデルトレーニングアプローチを実証し、最良のDESOM分類器は検出率6.6%、偽陽性率1.5%を示した。
desomは、ニューラルネットワークや意思決定ツリーなど、他のタイプの分類器と組み合わせて使用する場合の実際の検出可能性を示す、決定境界を微調整するよりニュアンス的な方法を提供する。
また、DESOMの潜在的な使用法とその制限についても論じる。
関連論文リスト
- Accurate Explanation Model for Image Classifiers using Class Association Embedding [5.378105759529487]
本稿では,グローバルな知識とローカルな知識の利点を組み合わせた生成的説明モデルを提案する。
クラスアソシエーション埋め込み(CAE)は、各サンプルを1組のクラス関連コードと個別コードにエンコードする。
クラス関連特徴を個々の特徴から効率的に分離するビルディングブロック・コヒーレンシー特徴抽出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-12T07:41:00Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
顔認識モデルは、トレーニングデータがテストデータと異なる場合、しばしば退化する。
本稿では,新たな敵情報ネットワーク(AIN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:14:11Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
我々は,画像パッチ間のグローバルな関係を学習することにより,通常の情報を反映する視覚変換器を用いたエンコーダデコーダモデルAnoViTを提案する。
提案モデルは,3つのベンチマークデータセット上での畳み込みモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-21T09:01:37Z) - Latent-Insensitive Autoencoders for Anomaly Detection and
Class-Incremental Learning [0.0]
我々は、類似ドメインからのラベルなしデータを負の例として用いて、正規のオートエンコーダの潜伏層(ブートネック)を形成するLatent-Insensitive Autoencoder (LIS-AE)を紹介した。
本稿では,クラス毎に異なる潜在層を追加して,クラス増分学習を複数の異常検出タスクとして扱うとともに,クラス増分学習を負の例として,各潜在層を形作る。
論文 参考訳(メタデータ) (2021-10-25T16:53:49Z) - Zero-sample surface defect detection and classification based on
semantic feedback neural network [13.796631421521765]
本論文では,複数角度からの画像タグ埋め込みにおける予測誤差を適応的に低減するアンサンブル協調学習アルゴリズムを提案する。
産業分野におけるゼロショットデータセットとシリンダーライナーデータセットを用いた各種実験により,競争結果が得られた。
論文 参考訳(メタデータ) (2021-06-15T08:26:36Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
インスタンスローカリゼーションと呼ばれる,新たな自己監視型プリテキストタスクを提案する。
境界ボックスを事前学習に組み込むことで、より優れたタスクアライメントとアーキテクチャアライメントが促進されることを示す。
実験結果から, オブジェクト検出のための最先端の転送学習結果が得られた。
論文 参考訳(メタデータ) (2021-02-16T17:58:57Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
敵対的なサポートセットを強調するための検出戦略を提案する。
我々は,特徴保存型オートエンコーダフィルタリングと,この検出を行うサポートセットの自己相似性の概念を利用する。
提案手法は攻撃非依存であり, 最善の知識まで, 数発分類器の検出を探索する最初の方法である。
論文 参考訳(メタデータ) (2020-12-09T14:13:41Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
ボルトは送電線で最も多くのファスナーであり、分割ピンを失う傾向にある。
タイムリーかつ効率的なトラブルシューティングを実現するために,伝送線路のボルトの自動ピン欠落検出を実現する方法は難しい問題である。
本稿では、ピン欠落検出のためのAVSCNet(Automatic Visual Shape Clustering Network)と呼ばれる自動検出モデルを構築した。
論文 参考訳(メタデータ) (2020-01-17T10:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。