論文の概要: Order-Disorder: Imitation Adversarial Attacks for Black-box Neural
Ranking Models
- arxiv url: http://arxiv.org/abs/2209.06506v2
- Date: Tue, 18 Apr 2023 08:02:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 18:31:50.548289
- Title: Order-Disorder: Imitation Adversarial Attacks for Black-box Neural
Ranking Models
- Title(参考訳): オーダーディオーダ:ブラックボックスニューラルランクモデルに対する模倣逆攻撃
- Authors: Jiawei Liu, Yangyang Kang, Di Tang, Kaisong Song, Changlong Sun,
Xiaofeng Wang, Wei Lu, Xiaozhong Liu
- Abstract要約: ブラックボックスニューラルパスランキングモデルに対する模倣逆攻撃を提案する。
重要クエリ/候補を列挙することで,対象経路ランキングモデルを透明化し,模倣することができることを示す。
また,一対の目的関数によって強化された革新的な勾配に基づく攻撃手法を提案し,敵の引き金を発生させる。
- 参考スコア(独自算出の注目度): 48.93128542994217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural text ranking models have witnessed significant advancement and are
increasingly being deployed in practice. Unfortunately, they also inherit
adversarial vulnerabilities of general neural models, which have been detected
but remain underexplored by prior studies. Moreover, the inherit adversarial
vulnerabilities might be leveraged by blackhat SEO to defeat better-protected
search engines. In this study, we propose an imitation adversarial attack on
black-box neural passage ranking models. We first show that the target passage
ranking model can be transparentized and imitated by enumerating critical
queries/candidates and then train a ranking imitation model. Leveraging the
ranking imitation model, we can elaborately manipulate the ranking results and
transfer the manipulation attack to the target ranking model. For this purpose,
we propose an innovative gradient-based attack method, empowered by the
pairwise objective function, to generate adversarial triggers, which causes
premeditated disorderliness with very few tokens. To equip the trigger
camouflages, we add the next sentence prediction loss and the language model
fluency constraint to the objective function. Experimental results on passage
ranking demonstrate the effectiveness of the ranking imitation attack model and
adversarial triggers against various SOTA neural ranking models. Furthermore,
various mitigation analyses and human evaluation show the effectiveness of
camouflages when facing potential mitigation approaches. To motivate other
scholars to further investigate this novel and important problem, we make the
experiment data and code publicly available.
- Abstract(参考訳): ニューラルテキストランキングモデルは、大幅な進歩を目撃し、実際にデプロイされている。
残念なことに、彼らは一般的な神経モデルの敵対的脆弱性も継承している。
さらに、ブラックハットSEOにより、より保護された検索エンジンを倒すために、継承された敵の脆弱性を利用することができる。
本研究では,ブラックボックスニューラルパスランキングモデルに対する模倣逆攻撃を提案する。
まず,重要クエリ/候補を列挙することで,対象パスのランキングモデルが透過的かつ模倣可能であることを示し,ランキング模倣モデルを訓練する。
ランキング模倣モデルを利用することで、ランキング結果を巧みに操作し、操作攻撃をターゲットランキングモデルに移すことができる。
そこで本研究では,対向目標関数を応用し,極めて少ないトークンで前処理された障害ラインを発生させる逆トリガーを生成する,革新的な勾配に基づく攻撃手法を提案する。
トリガーカモフラージュを導入するために、次の文予測損失と言語モデルフルエンシー制約を目的関数に追加する。
パスランキングにおける実験結果は,様々な sota ニューラルランキングモデルに対するランキング模倣攻撃モデルと敵意トリガーの有効性を示す。
さらに, 種々の緩和分析と人的評価により, 潜在的な緩和アプローチに対するカモフラージュの有効性が示された。
他の研究者がこの新しく重要な問題をさらに調査する動機づけるために、実験データとコードを一般公開する。
関連論文リスト
- Black-box Adversarial Transferability: An Empirical Study in Cybersecurity Perspective [0.0]
敵対的機械学習では、悪意のあるユーザは、トレーニングまたはテストフェーズ中に、相手の摂動入力をモデルに挿入することで、ディープラーニングモデルを騙そうとします。
サイバー攻撃検知システムにおけるブラックボックスの逆転現象を実証的に検証する。
その結果,攻撃者が対象モデルの内部情報にアクセスできなくても,どんなディープラーニングモデルでも敵攻撃に強い影響を受けやすいことが示唆された。
論文 参考訳(メタデータ) (2024-04-15T06:56:28Z) - Perturbation-Invariant Adversarial Training for Neural Ranking Models:
Improving the Effectiveness-Robustness Trade-Off [107.35833747750446]
正統な文書に不可避な摂動を加えることで 敵の例を作れます
この脆弱性は信頼性に関する重大な懸念を生じさせ、NRMの展開を妨げている。
本研究では,NRMにおける有効・損耗トレードオフに関する理論的保証を確立する。
論文 参考訳(メタデータ) (2023-12-16T05:38:39Z) - Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
本稿では、モデル抽出攻撃に対するリコメンデータシステムに対する防御のために、グラディエントベースのランキング最適化(GRO)を導入する。
GROは、攻撃者の代理モデルの損失を最大化しながら、保護対象モデルの損失を最小限にすることを目的としている。
その結果,モデル抽出攻撃に対するGROの防御効果は良好であった。
論文 参考訳(メタデータ) (2023-10-25T03:30:42Z) - A Tale of HodgeRank and Spectral Method: Target Attack Against Rank
Aggregation Is the Fixed Point of Adversarial Game [153.74942025516853]
ランクアグリゲーション手法の本質的な脆弱性は文献ではよく研究されていない。
本稿では,ペアデータの変更による集計結果の指定を希望する目的のある敵に焦点をあてる。
提案した標的攻撃戦略の有効性は,一連の玩具シミュレーションと実世界のデータ実験によって実証された。
論文 参考訳(メタデータ) (2022-09-13T05:59:02Z) - What Does the Gradient Tell When Attacking the Graph Structure [44.44204591087092]
本稿では,GNNのメッセージパッシング機構により,攻撃者がクラス間エッジを増大させる傾向があることを示す。
異なるノードを接続することで、攻撃者はより効果的にノード機能を破損させ、そのような攻撃をより有利にする。
本研究では,攻撃効率と非受容性のバランスを保ち,より優れた非受容性を実現するために攻撃効率を犠牲にする,革新的な攻撃損失を提案する。
論文 参考訳(メタデータ) (2022-08-26T15:45:20Z) - Adversarial Attack and Defense in Deep Ranking [100.17641539999055]
本稿では,敵対的摂動によって選抜された候補者のランクを引き上げたり下げたりできる,ディープランキングシステムに対する2つの攻撃を提案する。
逆に、全ての攻撃に対するランキングモデルロバスト性を改善するために、反崩壊三重項防御法が提案されている。
MNIST, Fashion-MNIST, CUB200-2011, CARS196およびStanford Online Productsデータセットを用いて, 敵のランク付け攻撃と防御を評価した。
論文 参考訳(メタデータ) (2021-06-07T13:41:45Z) - AdvHaze: Adversarial Haze Attack [19.744435173861785]
現実世界の風景に共通する現象であるヘイズに基づく新たな敵対攻撃法を紹介します。
本手法は, 大気散乱モデルに基づく画像に, 高い現実性で, 潜在的に逆転するハゼを合成することができる。
提案手法は,高い成功率を達成し,ベースラインと異なる分類モデル間での転送性が向上することを示す。
論文 参考訳(メタデータ) (2021-04-28T09:52:25Z) - Practical Relative Order Attack in Deep Ranking [99.332629807873]
ディープランキングシステム、すなわちオーダーアタックに対する新しい敵の攻撃を定式化します。
順序攻撃は、攻撃者が特定した順列に応じて、選択された候補群間の相対順序を暗黙的に変更する。
主要なeコマースプラットフォームでうまく実装されている。
論文 参考訳(メタデータ) (2021-03-09T06:41:18Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
我々は、ブラックボックス転送攻撃に対するモデルの堅牢性を改善するための新しいアプローチを提案する。
除去可能な追加ニューラルネットワークが対象モデルに含まれており、テクスチャリング効果を誘導するように設計されている。
提案手法は,対象モデルの予測にのみアクセス可能であり,ラベル付きデータセットを必要としない。
論文 参考訳(メタデータ) (2020-04-10T06:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。