論文の概要: Explainer-guided Targeted Adversarial Attacks against Binary Code Similarity Detection Models
- arxiv url: http://arxiv.org/abs/2506.05430v1
- Date: Thu, 05 Jun 2025 08:29:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.156904
- Title: Explainer-guided Targeted Adversarial Attacks against Binary Code Similarity Detection Models
- Title(参考訳): バイナリコード類似性検出モデルに対する説明者誘導型敵攻撃
- Authors: Mingjie Chen, Tiancheng Zhu, Mingxue Zhang, Yiling He, Minghao Lin, Penghui Li, Kui Ren,
- Abstract要約: 我々は,BCSDモデルに対する敵攻撃に対する新たな最適化を提案する。
特に,攻撃目標は,モデル予測を特定の範囲に制限することである。
我々の攻撃は、モデル決定境界の解釈において、ブラックボックス、モデルに依存しない説明器の優れた能力を活用する。
- 参考スコア(独自算出の注目度): 12.524811181751577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary code similarity detection (BCSD) serves as a fundamental technique for various software engineering tasks, e.g., vulnerability detection and classification. Attacks against such models have therefore drawn extensive attention, aiming at misleading the models to generate erroneous predictions. Prior works have explored various approaches to generating semantic-preserving variants, i.e., adversarial samples, to evaluate the robustness of the models against adversarial attacks. However, they have mainly relied on heuristic criteria or iterative greedy algorithms to locate salient code influencing the model output, failing to operate on a solid theoretical basis. Moreover, when processing programs with high complexities, such attacks tend to be time-consuming. In this work, we propose a novel optimization for adversarial attacks against BCSD models. In particular, we aim to improve the attacks in a challenging scenario, where the attack goal is to limit the model predictions to a specific range, i.e., the targeted attacks. Our attack leverages the superior capability of black-box, model-agnostic explainers in interpreting the model decision boundaries, thereby pinpointing the critical code snippet to apply semantic-preserving perturbations. The evaluation results demonstrate that compared with the state-of-the-art attacks, the proposed attacks achieve higher attack success rate in almost all scenarios, while also improving the efficiency and transferability. Our real-world case studies on vulnerability detection and classification further demonstrate the security implications of our attacks, highlighting the urgent need to further enhance the robustness of existing BCSD models.
- Abstract(参考訳): バイナリコード類似性検出(BCSD)は、脆弱性検出や分類など、さまざまなソフトウェアエンジニアリングタスクの基本的な技術として機能する。
このようなモデルに対する攻撃は、誤った予測を生成するためにモデルを誤解させることを目的として、広範囲に注意を向けている。
先行研究は、敵の攻撃に対するモデルの堅牢性を評価するために、セマンティック保存の変種を生成するための様々なアプローチを探索してきた。
しかし、彼らは主にヒューリスティックな基準や反復的な欲求アルゴリズムを頼りにしており、モデル出力に影響を与える健全なコードを見つけることができず、しっかりとした理論上は動作しなかった。
さらに、複雑度の高いプログラムを処理する場合、そのような攻撃は時間がかかりがちである。
本稿では,BCSDモデルに対する敵攻撃に対する新たな最適化を提案する。
特に,攻撃目標は,特定の範囲,すなわち対象とする攻撃に対して,モデル予測を限定することである。
我々の攻撃は、モデル決定境界を解釈するブラックボックス、モデルに依存しない説明器の優れた能力を活用し、重要なコードスニペットをピンポイントして意味保存の摂動を適用します。
その結果, 現状の攻撃と比較して, ほぼすべてのシナリオにおいて攻撃成功率が向上し, 効率と伝達性も向上した。
私たちの実世界の脆弱性検出と分類に関するケーススタディは、攻撃のセキュリティへの影響をさらに示しており、既存のBCSDモデルの堅牢性をさらに強化する緊急の必要性を強調しています。
関連論文リスト
- MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models [56.09354775405601]
モデル抽出攻撃は、クエリアクセスを通じてブラックボックスモデルの機能を複製することを目的としている。
既存のディフェンスでは、アタッカークエリにはオフ・オブ・ディストリビューション(OOD)サンプルがあることを前提としており、不審な入力を検出し破壊することができる。
OOD仮定に依存しない新しい防衛戦略であるMISLEADERを提案する。
論文 参考訳(メタデータ) (2025-06-03T01:37:09Z) - Evaluating the Robustness of LiDAR Point Cloud Tracking Against Adversarial Attack [6.101494710781259]
本稿では,3次元物体追跡の文脈において,敵攻撃を行うための統一的なフレームワークを提案する。
ブラックボックス攻撃のシナリオに対処するために,新たなトランスファーベースアプローチであるTarget-aware Perturbation Generation (TAPG)アルゴリズムを導入する。
実験の結果,ブラックボックスとホワイトボックスの両方の攻撃を受けた場合,高度な追跡手法に重大な脆弱性があることが判明した。
論文 参考訳(メタデータ) (2024-10-28T10:20:38Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
この研究は、攻撃者が依然として不確実性推定を操作することに興味を持つ異なる敵シナリオに焦点を当てる。
特に、アウトプットが下流モジュールや人間のオペレータによって消費される場合、機械学習モデルの使用を損なうことが目標である。
論文 参考訳(メタデータ) (2023-09-19T12:54:09Z) - Transferable Attack for Semantic Segmentation [59.17710830038692]
敵が攻撃し、ソースモデルから生成された敵の例がターゲットモデルを攻撃するのに失敗するのを観察します。
本研究では, セマンティックセグメンテーションのためのアンサンブルアタックを提案する。
論文 参考訳(メタデータ) (2023-07-31T11:05:55Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z) - Luring of transferable adversarial perturbations in the black-box
paradigm [0.0]
我々は、ブラックボックス転送攻撃に対するモデルの堅牢性を改善するための新しいアプローチを提案する。
除去可能な追加ニューラルネットワークが対象モデルに含まれており、テクスチャリング効果を誘導するように設計されている。
提案手法は,対象モデルの予測にのみアクセス可能であり,ラベル付きデータセットを必要としない。
論文 参考訳(メタデータ) (2020-04-10T06:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。