論文の概要: Simulation of Atlantic Hurricane Tracks and Features: A Deep Learning
Approach
- arxiv url: http://arxiv.org/abs/2209.06901v1
- Date: Fri, 12 Aug 2022 13:14:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-18 17:04:20.460974
- Title: Simulation of Atlantic Hurricane Tracks and Features: A Deep Learning
Approach
- Title(参考訳): 大西洋ハリケーンの軌跡と特徴のシミュレーション:深層学習アプローチ
- Authors: Rikhi Bose, Adam L. Pintar, and Emil Simiu
- Abstract要約: 本稿では機械学習(ML)とディープラーニング(DL)技術を用いて,HURDAT2データベースモデルで利用可能な入力データ(ストーム特徴)から取得する。
この目的を追求するために、嵐中心を経度と緯度で表す軌道モデルと、中央の圧力と最大風速1-min$の風速を10$mの高度で表す強度モデルが作成された。
嵐シミュレーションモデルの有効性はニューオーリンズ、マイアミ、ハッテラス岬の3つの例で実証されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of this paper is to employ machine learning (ML) and deep
learning (DL) techniques to obtain from input data (storm features) available
in or derived from the HURDAT2 database models capable of simulating important
hurricane properties such as landfall location and wind speed that are
consistent with historical records. In pursuit of this objective, a trajectory
model providing the storm center in terms of longitude and latitude, and
intensity models providing the central pressure and maximum 1-$min$ wind speed
at 10 $m$ elevation were created. The trajectory and intensity models are
coupled and must be advanced together, six hours at a time, as the features
that serve as inputs to the models at any given step depend on predictions at
the previous time steps. Once a synthetic storm database is generated,
properties of interest, such as the frequencies of large wind speeds may be
extracted from any part of the simulation domain. The coupling of the
trajectory and intensity models obviates the need for an intensity decay inland
of the coastline. Prediction results are compared to historical data, and the
efficacy of the storm simulation models is demonstrated for three examples: New
Orleans, Miami and Cape Hatteras.
- Abstract(参考訳): 本研究の目的は,HURDAT2データベースモデルで利用可能な入力データ(ストーム特徴)から機械学習(ML)と深層学習(DL)技術を用いて,歴史的記録と整合した降着位置や風速などの重要なハリケーン特性をシミュレートすることである。
この目的を追求するために、嵐中心を経度と緯度で表す軌道モデルと、中央の圧力と最大風速1-min$の風速を10$mの高度で表す強度モデルが作成された。
軌道モデルと強度モデルは結合され、任意のステップでモデルへの入力として機能する機能は、前回のステップでの予測に依存するため、同時に6時間ずつ前進する必要がある。
合成嵐データベースが生成されると、シミュレーション領域の任意の部分から大風速の周波数などの興味の性質を抽出することができる。
軌道と強度モデルの結合は、海岸線の内陸の強度減衰の必要性を緩和する。
予測結果を過去のデータと比較し, ニューオリンズ, マイアミ, ケープハッテラスの3例について, ストームシミュレーションモデルの有効性を実証した。
関連論文リスト
- Inferring Thunderstorm Occurrence from Vertical Profiles of Convection-Permitting Simulations: Physical Insights from a Physical Deep Learning Model [0.0]
雷雨は激しい降水量、干ばつ、雷、強い風のために、社会と経済に大きな影響を及ぼす。
我々は,10の大気変数の垂直プロファイルから雷雨の発生確率を直接推定する深層ニューラルネットワークSALAMA 1Dを開発した。
SALAMA 1Dは、中央ヨーロッパで雷観測を基礎として訓練されている。
論文 参考訳(メタデータ) (2024-09-30T08:40:28Z) - Storm Surge Modeling in the AI ERA: Using LSTM-based Machine Learning
for Enhancing Forecasting Accuracy [0.7149367973754319]
LSTMに基づくディープラーニングネットワーク機械学習アーキテクチャを提案する。
本研究の全体的な目標は,物理モデルのシステム的誤差を予測し,シミュレーション結果の精度を向上させることである。
論文 参考訳(メタデータ) (2024-03-07T13:19:38Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
イタリアの32カ所の標高10mの風速計から観測された大量の風のデータセットを分析した。
我々は、過去の風の履歴を用いて教師あり学習アルゴリズムを訓練し、その価値を将来予測する。
最適設計と性能は場所によって異なることがわかった。
論文 参考訳(メタデータ) (2022-04-01T14:55:10Z) - A Spatial-temporal Graph Deep Learning Model for Urban Flood Nowcasting
Leveraging Heterogeneous Community Features [1.2599533416395765]
本研究の目的は,都市浸水流を対象とした新しい深層学習モデルフレームワークの開発と試験である。
本稿では,アテンションベース時空間グラフ畳み込みネットワーク(ASTGCN)モデルを含む新しい計算モデルを提案する。
以上の結果から, このモデルにより, 都市浸水量の増加に優れた性能が得られることが示唆された。
論文 参考訳(メタデータ) (2021-11-09T15:35:05Z) - Data-Based Models for Hurricane Evolution Prediction: A Deep Learning
Approach [0.0]
ここで提示される多対多のRNN嵐軌道予測モデルは、NHCが使用するアンサンブルモデルよりもはるかに高速である。
モデル予測誤差の詳細な解析により,多対一予測モデルは複合的エラー蓄積による多対多予測モデルよりも精度が低いことが示された。
論文 参考訳(メタデータ) (2021-10-30T00:31:48Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Hurricane Forecasting: A Novel Multimodal Machine Learning Framework [2.829284162137884]
我々のフレームワークはHurricastと呼ばれ、時空間データと統計データを効率的に組み合わせている。
Hurricastの運用予測コンセンサスモデルへの導入は、National Hurricane Centerの公式予測よりも改善される可能性がある。
論文 参考訳(メタデータ) (2020-11-11T23:55:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。