論文の概要: Inferring Thunderstorm Occurrence from Vertical Profiles of Convection-Permitting Simulations: Physical Insights from a Physical Deep Learning Model
- arxiv url: http://arxiv.org/abs/2409.20087v1
- Date: Mon, 30 Sep 2024 08:40:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 18:56:57.490415
- Title: Inferring Thunderstorm Occurrence from Vertical Profiles of Convection-Permitting Simulations: Physical Insights from a Physical Deep Learning Model
- Title(参考訳): 対流-通気シミュレーションの鉛直プロファイルから雷雨の発生を推定する:物理深層学習モデルによる物理的考察
- Authors: Kianusch Vahid Yousefnia, Tobias Bölle, Christoph Metzl,
- Abstract要約: 雷雨は激しい降水量、干ばつ、雷、強い風のために、社会と経済に大きな影響を及ぼす。
我々は,10の大気変数の垂直プロファイルから雷雨の発生確率を直接推定する深層ニューラルネットワークSALAMA 1Dを開発した。
SALAMA 1Dは、中央ヨーロッパで雷観測を基礎として訓練されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thunderstorms have significant social and economic impacts due to heavy precipitation, hail, lightning, and strong winds, necessitating reliable forecasts. Thunderstorm forecasts based on numerical weather prediction (NWP) often rely on single-level surrogate predictors, like convective available potential energy and precipitation rate, derived from vertical profiles of three-dimensional atmospheric variables. In this study, we develop SALAMA 1D, a deep neural network that directly infers the probability of thunderstorm occurrence from vertical profiles of ten atmospheric variables, bypassing single-level predictors. By training the model on convection-permitting NWP forecasts, we allow SALAMA 1D to flexibly identify convective patterns, with the goal of enhancing forecast accuracy. The model's architecture is physically motivated: sparse connections encourage interactions at similar height levels, while a shuffling mechanism prevents the model from learning non-physical patterns tied to the vertical grid. SALAMA 1D is trained over Central Europe with lightning observations as the ground truth. Comparative analysis against a baseline machine learning model that uses single-level predictors shows SALAMA 1D's superior skill across various metrics and lead times of up to at least 11 hours. Moreover, increasing the number of forecasts used to compile the training set improves skill, even when training set size is kept constant. Sensitivity analysis using saliency maps indicates that the model reconstructs environmental lapse rates and rediscovers patterns consistent with established theoretical understandings, such as positive buoyancy, convective inhibition, and ice particle formation near the tropopause, while ruling out thunderstorm occurrence based on the absence of mid-level graupel and cloud cover.
- Abstract(参考訳): 雷雨は降水量、干ばつ、雷、強風などによって社会や経済に大きな影響を与え、信頼できる予測を必要としている。
数値気象予測(NWP)に基づく雷雨予測は、しばしば3次元変数の垂直プロファイルから導かれる対流可能なポテンシャルエネルギーや降水率のような単一レベルの代理予測に頼っている。
本研究では,10の大気変数の垂直分布から雷雨の発生確率を直接推定し,単層予測器をバイパスする深層ニューラルネットワークSALAMA 1Dを開発した。
対流を許容するNWP予測のモデルをトレーニングすることにより,SALAMA 1Dが対流パターンを柔軟に識別し,予測精度を向上させることを目的とする。
疎結合は、同じ高さの相互作用を促進する一方、シャッフル機構は、モデルが垂直格子に結びついている非物理的パターンを学習するのを防ぐ。
SALAMA 1Dは、中央ヨーロッパで雷観測を基礎として訓練されている。
単一レベルの予測器を使用するベースライン機械学習モデルとの比較分析は、SALAMA 1Dのさまざまなメトリクスと、最大11時間までのリードタイムに優れたスキルを示している。
さらに、トレーニングセットのコンパイルに使用する予測数を増やすことで、トレーニングセットのサイズを一定に保つ場合でも、スキルが向上する。
正の浮力, 対流抑制, 氷粒子形成など, 確立された理論的理解と整合した環境崩壊率と再粘性パターンを, 中層重力と雲カバーの欠如に基づいて雷雨の発生を抑えながら, 塩分マップを用いた感度解析により再構成した。
関連論文リスト
- Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Scaling transformer neural networks for skillful and reliable
medium-range weather forecasting [24.02355555479722]
本稿では,標準変圧器バックボーンの変更を最小限に抑えつつ,気象予報の最先端性能であるStormerを紹介する。
Stormerの中核はランダムな予測目標であり、様々な時間間隔で天気のダイナミクスを予測するためにモデルを訓練する。
ウェザーベンチ2では、ストーマーは短距離から中距離の予測で競争力を発揮し、現在の手法を7日を超えて上回っている。
論文 参考訳(メタデータ) (2023-12-06T19:46:06Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - A machine-learning approach to thunderstorm forecasting through post-processing of simulation data [0.0]
雷雨は社会や経済に危険をもたらし、信頼できる雷雨予報を要求する。
本研究では,数値天気予報(NWP)データから雷雨の発生を識別するフィードフォワードニューラルネットワークモデルである,SALAMA(Machine Central Learning)を用いた行動同定のための署名ベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-15T16:21:15Z) - Data-Based Models for Hurricane Evolution Prediction: A Deep Learning
Approach [0.0]
ここで提示される多対多のRNN嵐軌道予測モデルは、NHCが使用するアンサンブルモデルよりもはるかに高速である。
モデル予測誤差の詳細な解析により,多対一予測モデルは複合的エラー蓄積による多対多予測モデルよりも精度が低いことが示された。
論文 参考訳(メタデータ) (2021-10-30T00:31:48Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。