Joint Debiased Representation and Image Clustering Learning with
Self-Supervision
- URL: http://arxiv.org/abs/2209.06941v1
- Date: Wed, 14 Sep 2022 21:23:41 GMT
- Title: Joint Debiased Representation and Image Clustering Learning with
Self-Supervision
- Authors: Shunjie-Fabian Zheng, JaeEun Nam, Emilio Dorigatti, Bernd Bischl,
Shekoofeh Azizi, Mina Rezaei
- Abstract summary: We develop a novel joint clustering and contrastive learning framework.
We adapt the debiased contrastive loss to avoid under-clustering minority classes of imbalanced datasets.
- Score: 3.1806743741013657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning is among the most successful methods for visual
representation learning, and its performance can be further improved by jointly
performing clustering on the learned representations. However, existing methods
for joint clustering and contrastive learning do not perform well on
long-tailed data distributions, as majority classes overwhelm and distort the
loss of minority classes, thus preventing meaningful representations to be
learned. Motivated by this, we develop a novel joint clustering and contrastive
learning framework by adapting the debiased contrastive loss to avoid
under-clustering minority classes of imbalanced datasets. We show that our
proposed modified debiased contrastive loss and divergence clustering loss
improves the performance across multiple datasets and learning tasks. The
source code is available at
https://anonymous.4open.science/r/SSL-debiased-clustering
Related papers
- Time-Series Contrastive Learning against False Negatives and Class Imbalance [17.43801009251228]
We conduct theoretical analysis and find they have overlooked the fundamental issues: false negatives and class imbalance inherent in the InfoNCE loss-based framework.
We introduce a straightforward modification grounded in the SimCLR framework, universally to models engaged in the instance discrimination task.
We perform semi-supervised consistency classification and enhance the representative ability of minority classes.
arXiv Detail & Related papers (2023-12-19T08:38:03Z) - InfoNCE Loss Provably Learns Cluster-Preserving Representations [54.28112623495274]
We show that the representation learned by InfoNCE with a finite number of negative samples is consistent with respect to clusters in the data.
Our main result is to show that the representation learned by InfoNCE with a finite number of negative samples is also consistent with respect to clusters in the data.
arXiv Detail & Related papers (2023-02-15T19:45:35Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Clustering-friendly Representation Learning via Instance Discrimination
and Feature Decorrelation [0.0]
We propose a clustering-friendly representation learning method using instance discrimination and feature decorrelation.
In evaluations of image clustering using CIFAR-10 and ImageNet-10, our method achieves accuracy of 81.5% and 95.4%, respectively.
arXiv Detail & Related papers (2021-05-31T22:59:31Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Contrastive Learning based Hybrid Networks for Long-Tailed Image
Classification [31.647639786095993]
We propose a novel hybrid network structure composed of a supervised contrastive loss to learn image representations and a cross-entropy loss to learn classifiers.
Experiments on three long-tailed classification datasets demonstrate the advantage of the proposed contrastive learning based hybrid networks in long-tailed classification.
arXiv Detail & Related papers (2021-03-26T05:22:36Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
We investigate whether applying contrastive learning to fine-tuning would bring further benefits.
We propose Contrast-regularized tuning (Core-tuning), a novel approach for fine-tuning contrastive self-supervised visual models.
arXiv Detail & Related papers (2021-02-12T16:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.