Time-Series Contrastive Learning against False Negatives and Class Imbalance
- URL: http://arxiv.org/abs/2312.11939v2
- Date: Sat, 24 Aug 2024 01:26:54 GMT
- Title: Time-Series Contrastive Learning against False Negatives and Class Imbalance
- Authors: Xiyuan Jin, Jing Wang, Lei Liu, Youfang Lin,
- Abstract summary: We conduct theoretical analysis and find they have overlooked the fundamental issues: false negatives and class imbalance inherent in the InfoNCE loss-based framework.
We introduce a straightforward modification grounded in the SimCLR framework, universally to models engaged in the instance discrimination task.
We perform semi-supervised consistency classification and enhance the representative ability of minority classes.
- Score: 17.43801009251228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an exemplary self-supervised approach for representation learning, time-series contrastive learning has exhibited remarkable advancements in contemporary research. While recent contrastive learning strategies have focused on how to construct appropriate positives and negatives, in this study, we conduct theoretical analysis and find they have overlooked the fundamental issues: false negatives and class imbalance inherent in the InfoNCE loss-based framework. Therefore, we introduce a straightforward modification grounded in the SimCLR framework, universally adaptable to models engaged in the instance discrimination task. By constructing instance graphs to facilitate interactive learning among instances, we emulate supervised contrastive learning via the multiple-instances discrimination task, mitigating the harmful impact of false negatives. Moreover, leveraging the graph structure and few-labeled data, we perform semi-supervised consistency classification and enhance the representative ability of minority classes. We compared our method with the most popular time-series contrastive learning methods on four real-world time-series datasets and demonstrated our significant advantages in overall performance.
Related papers
- Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL) tailored specifically for class-incremental learning scenarios.
Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique.
arXiv Detail & Related papers (2024-05-17T19:49:02Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data.
This survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models.
arXiv Detail & Related papers (2024-03-30T02:55:49Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
Time-series representation learning can extract representations from data with temporal dynamics and sparse labels.
We propose a new time-series representation learning method by combining the advantages of self-supervised tasks.
We evaluate the proposed framework on three downstream tasks: time-series classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2023-03-02T07:44:06Z) - Joint Debiased Representation and Image Clustering Learning with
Self-Supervision [3.1806743741013657]
We develop a novel joint clustering and contrastive learning framework.
We adapt the debiased contrastive loss to avoid under-clustering minority classes of imbalanced datasets.
arXiv Detail & Related papers (2022-09-14T21:23:41Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Incremental False Negative Detection for Contrastive Learning [95.68120675114878]
We introduce a novel incremental false negative detection for self-supervised contrastive learning.
During contrastive learning, we discuss two strategies to explicitly remove the detected false negatives.
Our proposed method outperforms other self-supervised contrastive learning frameworks on multiple benchmarks within a limited compute.
arXiv Detail & Related papers (2021-06-07T15:29:14Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.