論文の概要: Landmark Tracking in Liver US images Using Cascade Convolutional Neural
Networks with Long Short-Term Memory
- arxiv url: http://arxiv.org/abs/2209.06952v1
- Date: Wed, 14 Sep 2022 22:01:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-16 13:22:05.357822
- Title: Landmark Tracking in Liver US images Using Cascade Convolutional Neural
Networks with Long Short-Term Memory
- Title(参考訳): 長期記憶を有するカスケード畳み込みニューラルネットワークを用いた肝us画像におけるランドマーク追跡
- Authors: Yupei Zhang, Xianjin Dai, Zhen Tian, Yang Lei, Jacob F. Wynne, Pretesh
Patel, Yue Chen, Tian Liu and Xiaofeng Yang
- Abstract要約: 本研究では,超音波(US)画像誘導放射線治療のための深層学習に基づく追跡手法を提案する。
提案したモデルは、MICCAI(Medicical Image Computing and Computer Assisted Interventions) 2015の課題で使用される、米国における肝追跡データセットでテストされた。
- 参考スコア(独自算出の注目度): 9.49563286905127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposed a deep learning-based tracking method for ultrasound (US)
image-guided radiation therapy. The proposed cascade deep learning model is
composed of an attention network, a mask region-based convolutional neural
network (mask R-CNN), and a long short-term memory (LSTM) network. The
attention network learns a mapping from a US image to a suspected area of
landmark motion in order to reduce the search region. The mask R-CNN then
produces multiple region-of-interest (ROI) proposals in the reduced region and
identifies the proposed landmark via three network heads: bounding box
regression, proposal classification, and landmark segmentation. The LSTM
network models the temporal relationship among the successive image frames for
bounding box regression and proposal classification. To consolidate the final
proposal, a selection method is designed according to the similarities between
sequential frames. The proposed method was tested on the liver US tracking
datasets used in the Medical Image Computing and Computer Assisted
Interventions (MICCAI) 2015 challenges, where the landmarks were annotated by
three experienced observers to obtain their mean positions. Five-fold
cross-validation on the 24 given US sequences with ground truths shows that the
mean tracking error for all landmarks is 0.65+/-0.56 mm, and the errors of all
landmarks are within 2 mm. We further tested the proposed model on 69 landmarks
from the testing dataset that has a similar image pattern to the training
pattern, resulting in a mean tracking error of 0.94+/-0.83 mm. Our experimental
results have demonstrated the feasibility and accuracy of our proposed method
in tracking liver anatomic landmarks using US images, providing a potential
solution for real-time liver tracking for active motion management during
radiation therapy.
- Abstract(参考訳): 本研究では,超音波画像誘導放射線治療のための深層学習に基づく追跡手法を提案する。
提案するカスケード深層学習モデルは,注目ネットワーク,マスク領域に基づく畳み込みニューラルネットワーク(マスクR-CNN),長期記憶(LSTM)ネットワークから構成される。
アテンションネットワークは、探索領域を低減するために、米国画像からランドマーク運動の疑似領域へのマッピングを学習する。
その後、マスクr-cnnは縮小領域で複数の領域間(roi)の提案を生成し、3つのネットワークヘッド(バウンディングボックス回帰、提案分類、ランドマークセグメンテーション)によって提案されているランドマークを識別する。
LSTMネットワークは、境界ボックス回帰と提案分類のための連続した画像フレーム間の時間的関係をモデル化する。
最終提案を統合するために、シーケンシャルフレーム間の類似性に応じて選択方法を設計する。
提案手法は,MICCAI (Messical Image Computing and Computer Assisted Interventions) 2015の課題で使用されている肝臓の追跡データセットでテストされた。
基底真理を持つ24のシーケンスにおける5倍のクロスバリデーションは、すべてのランドマークの平均追跡誤差が 0.65+/-0.56 mm であり、すべてのランドマークの誤差は 2 mm 以内であることを示している。
さらに,トレーニングパターンに類似した画像パターンを持つテストデータセットから,69個のランドマークに対して提案モデルをテストした結果,平均追跡誤差は0.94+/-0.83mmとなった。
実験結果は,us画像を用いた肝解剖学的ランドマーク追跡における提案手法の有効性と精度を実証し,放射線治療中の能動的運動管理のためのリアルタイム肝追跡の可能性を示唆した。
関連論文リスト
- On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
我々は,CT画像からの多視点椎体局在と同定を提案する。
本研究では,3次元問題を異なる視点における2次元局所化および識別タスクに変換する。
本手法は,多視点グローバル情報を自然に学習することができる。
論文 参考訳(メタデータ) (2023-07-24T14:43:07Z) - End-to-end Deformable Attention Graph Neural Network for Single-view
Liver Mesh Reconstruction [2.285821277711784]
本稿では,肝臓の三角形形状をリアルタイムに生成する新しいエンド・ツー・エンドアテンショングラフニューラルネットワークモデルを提案する。
提案手法は平均誤差3.06+-0.7mm,チャンファー距離63.14+-27.28。
論文 参考訳(メタデータ) (2023-03-13T19:15:49Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
多発性硬化症(Multiple Sclerosis、MS)は、中枢神経系の病変を引き起こす自己免疫性脱髄性疾患である。
今のところ、病変の分断には多要素自動バイオメディカルアプローチが多用されている。
著者らは1つのモダリティ(FLAIR画像)を用いてMS病変を正確に分類する方法を提案する。
論文 参考訳(メタデータ) (2022-01-05T21:37:43Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Multipath CNN with alpha matte inference for knee tissue segmentation
from MRI [2.064612766965483]
本稿では, 深層学習に基づく膝組織分割のための自動セグメンテーションフレームワークを提案する。
低階テンソル再構成セグメンテーションネットワークとデコーダベースのセグメンテーションネットワークを組み合わせた,新しいマルチパスCNN方式を提案する。
CNNからのセグメンテーションをさらに改善するため、重畳された領域を効果的に活用するトリマップ生成を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:48:47Z) - Optimising Knee Injury Detection with Spatial Attention and Validating
Localisation Ability [0.5772546394254112]
この研究は、膝の外傷検出を最適化するための空間的注意ブロックを備えた、事前訓練された多視点畳み込みニューラルネットワーク(CNN)を用いている。
画像レベルのラベルが付いたオープンソースのMRIデータセットを用いて解析を行った。
論文 参考訳(メタデータ) (2021-08-18T13:24:17Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Volumetric landmark detection with a multi-scale shift equivariant
neural network [16.114319747246334]
本稿では,3次元画像における高速かつメモリ効率の高いランドマーク検出を実現するマルチスケールのエンドツーエンドディープラーニング手法を提案する。
今回我々は,263個のCT上における頸動脈分岐検出法について検討し,平均ユークリッド距離2.81mmで最先端の精度を実現した。
論文 参考訳(メタデータ) (2020-03-03T17:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。