論文の概要: Optimising Knee Injury Detection with Spatial Attention and Validating
Localisation Ability
- arxiv url: http://arxiv.org/abs/2108.08136v1
- Date: Wed, 18 Aug 2021 13:24:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-19 14:50:11.970830
- Title: Optimising Knee Injury Detection with Spatial Attention and Validating
Localisation Ability
- Title(参考訳): 空間的注意と局所化能力の検証による膝関節損傷検出の最適化
- Authors: Niamh Belton, Ivan Welaratne, Adil Dahlan, Ronan T Hearne, Misgina
Tsighe Hagos, Aonghus Lawlor and Kathleen M. Curran
- Abstract要約: この研究は、膝の外傷検出を最適化するための空間的注意ブロックを備えた、事前訓練された多視点畳み込みニューラルネットワーク(CNN)を用いている。
画像レベルのラベルが付いたオープンソースのMRIデータセットを用いて解析を行った。
- 参考スコア(独自算出の注目度): 0.5772546394254112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work employs a pre-trained, multi-view Convolutional Neural Network
(CNN) with a spatial attention block to optimise knee injury detection. An
open-source Magnetic Resonance Imaging (MRI) data set with image-level labels
was leveraged for this analysis. As MRI data is acquired from three planes, we
compare our technique using data from a single-plane and multiple planes
(multi-plane). For multi-plane, we investigate various methods of fusing the
planes in the network. This analysis resulted in the novel 'MPFuseNet' network
and state-of-the-art Area Under the Curve (AUC) scores for detecting Anterior
Cruciate Ligament (ACL) tears and Abnormal MRIs, achieving AUC scores of 0.977
and 0.957 respectively. We then developed an objective metric, Penalised
Localisation Accuracy (PLA), to validate the model's localisation ability. This
metric compares binary masks generated from Grad-Cam output and the
radiologist's annotations on a sample of MRIs. We also extracted explainability
features in a model-agnostic approach that were then verified as clinically
relevant by the radiologist.
- Abstract(参考訳): 本研究は,前訓練された多視点畳み込みニューラルネットワーク(cnn)と空間的注意ブロックを用いて膝関節損傷検出を最適化する。
画像レベルのラベルが付いたオープンソースのMRIデータセットを用いて解析を行った。
MRIデータは3つの平面から取得されるので、単平面と複数平面(複数平面)のデータを用いて比較する。
マルチプレーンの場合,ネットワーク内の平面を融合する様々な手法について検討する。
この分析の結果,前十字靭帯断裂(ACL)と異常MRIをそれぞれ検出し,AUCの0.977と0.957のスコアを達成できる「MPFuseNet」ネットワークと最先端のAUCスコアが得られた。
次に,モデルの局所化能力を検証するために,pla(penalized localization accuracy)という客観的指標を開発した。
このメトリクスは、grad-cam出力から生成されるバイナリマスクとmriサンプルの放射線科医のアノテーションを比較します。
また, モデル非依存なアプローチで説明可能性の特徴を抽出し, 放射線科医による臨床的妥当性を検証した。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
ボリューム・スイープ・イメージング(VSI)は、訓練を受けていないオペレーターが高品質な超音波画像をキャプチャできる革新的な手法である。
本稿ではWavelet_Attention_UNet(WATUNet)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルでは、簡単な接続ではなく、ウェーブレットゲート(WG)とアテンションゲート(AG)をエンコーダとデコーダの間に組み込んで、上記の制限を克服する。
論文 参考訳(メタデータ) (2023-11-17T20:32:37Z) - NEURO HAND: A weakly supervised Hierarchical Attention Network for
interpretable neuroimaging abnormality Detection [0.516706940452805]
臨床病院で得られたMRIスキャンを用いて, 異常検出のための階層的注意ネットワークを提案する。
提案するネットワークは,非体積データ(高分解能MRIスライススタック)に適しており,二値検査レベルのラベルからトレーニングすることができる。
論文 参考訳(メタデータ) (2023-11-06T09:55:19Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
本稿では,新しい3次元焦点変調UNetであるFocalSegNetを提案する。
UIA検出では偽陽性率は0.21で感度は0.80であった。
論文 参考訳(メタデータ) (2023-08-06T03:28:08Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
本稿では, 構造的磁気共鳴画像(sMRI)に基づく自閉症スペクトラム障害の診断を, 異常検出手法を用いて提案する。
GAN(Generative Adversarial Network)は、健康な被験者のsMRIスキャンでのみ訓練される。
実験の結果、ASD検出フレームワークは最先端のトレーニングデータと互換性があり、トレーニングデータもはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-02-21T04:37:25Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。