論文の概要: FRANS: Automatic Feature Extraction for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2209.07018v1
- Date: Thu, 15 Sep 2022 03:14:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-16 13:11:03.253685
- Title: FRANS: Automatic Feature Extraction for Time Series Forecasting
- Title(参考訳): FRANS:時系列予測のための自動特徴抽出
- Authors: Alexey Chernikov, Chang Wei Tan, Pablo Montero-Manso, Christoph
Bergmeir
- Abstract要約: ドメイン知識を必要としない静的な機能のための自律的機能検索ネットワークを開発した。
以上の結果から,ほとんどの状況において,我々の特徴が精度の向上につながることが明らかとなった。
- 参考スコア(独自算出の注目度): 2.3226893628361682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature extraction methods help in dimensionality reduction and capture
relevant information. In time series forecasting (TSF), features can be used as
auxiliary information to achieve better accuracy. Traditionally, features used
in TSF are handcrafted, which requires domain knowledge and significant
data-engineering work. In this research, we first introduce a notion of static
and dynamic features, which then enables us to develop our autonomous Feature
Retrieving Autoregressive Network for Static features (FRANS) that does not
require domain knowledge. The method is based on a CNN classifier that is
trained to create for each series a collective and unique class representation
either from parts of the series or, if class labels are available, from a set
of series of the same class. It allows to discriminate series with similar
behaviour but from different classes and makes the features extracted from the
classifier to be maximally discriminatory. We explore the interpretability of
our features, and evaluate the prediction capabilities of the method within the
forecasting meta-learning environment FFORMA. Our results show that our
features lead to improvement in accuracy in most situations. Once trained our
approach creates features orders of magnitude faster than statistical methods.
- Abstract(参考訳): 特徴抽出法は次元の減少と関連する情報の捕捉に役立つ。
時系列予測(TSF)では、特徴を補助情報として使用して精度を向上させることができる。
伝統的に、tsfで使われる機能は手作りであり、ドメイン知識と重要なデータエンジニアリング作業を必要とする。
本研究では,まず静的および動的機能の概念を導入し,ドメイン知識を必要としない自律的機能検索型ネットワーク(frans)の開発を可能にする。
このメソッドはCNN分類器に基づいており、各シリーズのために、シリーズの一部またはクラスラベルが利用可能であれば、同じクラスの一連の集合から集合的でユニークなクラス表現を作成するように訓練されている。
類似した振る舞いを持つ級数と異なるクラスを区別することができ、分類器から抽出された特徴を最大に判別することができる。
本稿では,特徴の解釈可能性を調査し,予測型メタ学習環境fformaにおける手法の予測能力を評価する。
その結果,我々の機能はほとんどの状況で精度が向上することがわかった。
一度訓練すると、我々のアプローチは統計的手法よりも桁違いに早く特徴を生み出す。
関連論文リスト
- An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Exploring Category-correlated Feature for Few-shot Image Classification [27.13708881431794]
本稿では,従来の知識として,新しいクラスとベースクラスのカテゴリ相関を探索し,シンプルで効果的な特徴補正手法を提案する。
提案手法は, 広く使用されている3つのベンチマークにおいて, 一定の性能向上が得られる。
論文 参考訳(メタデータ) (2021-12-14T08:25:24Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Temporal Dependencies in Feature Importance for Time Series Predictions [4.082348823209183]
時系列予測設定における特徴重要度を評価するためのフレームワークであるWinITを提案する。
我々は、ソリューションが時間ステップ内の機能の適切な属性をどのように改善するかを示す。
WinIT は FIT の2.47倍の性能を達成しており、実際のMIMIC の致命的課題における他の特徴的重要な手法である。
論文 参考訳(メタデータ) (2021-07-29T20:31:03Z) - Dynamic Instance-Wise Classification in Correlated Feature Spaces [15.351282873821935]
典型的な機械学習環境では、すべてのテストインスタンスの予測は、モデルトレーニング中に発見された機能の共通サブセットに基づいている。
それぞれのテストインスタンスに対して個別に評価する最適な特徴を順次選択し、分類精度に関して更なる改善が得られないことを判断すると、選択プロセスが終了して予測を行う新しい手法を提案する。
提案手法の有効性, 一般化性, 拡張性について, 多様なアプリケーション領域の様々な実世界のデータセットで説明する。
論文 参考訳(メタデータ) (2021-06-08T20:20:36Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
畳み込みニューラルネットワーク(CNN)は、ラベルと相関する支配的特徴を活性化することにより、画像分類を行う。
ドメイン外データに対するCNNの一般化を著しく改善する簡単なトレーニングである自己整合表現(RSC)を導入する。
RSCはトレーニングデータ上で活性化される主要な機能に対して反復的に挑戦し、ラベルと相関する残りの機能を有効にするようネットワークに強制する。
論文 参考訳(メタデータ) (2020-07-05T21:42:26Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z) - Learning Class Regularized Features for Action Recognition [68.90994813947405]
本稿では,階層活性化のクラスベース正規化を行うクラス正規化手法を提案する。
動作認識に最先端CNNアーキテクチャのクラス正規化ブロックを用いることで,Kineetics,UCF-101,HMDB-51データセットにおいて,それぞれ1.8%,1.2%,1.4%の体系的改善が得られた。
論文 参考訳(メタデータ) (2020-02-07T07:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。