論文の概要: Multicalibrated Regression for Downstream Fairness
- arxiv url: http://arxiv.org/abs/2209.07312v1
- Date: Thu, 15 Sep 2022 14:16:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-16 13:40:24.709133
- Title: Multicalibrated Regression for Downstream Fairness
- Title(参考訳): 下流フェアネスのマルチキャリブレーション回帰
- Authors: Ira Globus-Harris and Varun Gupta and Christopher Jung and Michael
Kearns and Jamie Morgenstern and Aaron Roth
- Abstract要約: 我々は、回帰関数 $hatf$ を適切にマルチキャリブレーションした'' を取り、効率的に後処理する方法を示します。
後処理はラベル付きデータを必要としない。
- 参考スコア(独自算出の注目度): 17.084765209458762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how to take a regression function $\hat{f}$ that is appropriately
``multicalibrated'' and efficiently post-process it into an approximately error
minimizing classifier satisfying a large variety of fairness constraints. The
post-processing requires no labeled data, and only a modest amount of unlabeled
data and computation. The computational and sample complexity requirements of
computing $\hat f$ are comparable to the requirements for solving a single fair
learning task optimally, but it can in fact be used to solve many different
downstream fairness-constrained learning problems efficiently. Our
post-processing method easily handles intersecting groups, generalizing prior
work on post-processing regression functions to satisfy fairness constraints
that only applied to disjoint groups. Our work extends recent work showing that
multicalibrated regression functions are ``omnipredictors'' (i.e. can be
post-processed to optimally solve unconstrained ERM problems) to constrained
optimization.
- Abstract(参考訳): 回帰関数 $\hat{f}$ を ` `multicalibrated'' として適切に取り、様々なフェアネス制約を満たす近似誤差最小化分類器に効率的に後処理する方法を示す。
ポストプロセッシングはラベル付きデータを必要としず、ラベル付きデータと計算の少ない量しか必要としない。
計算量とサンプルの複雑性の要件は、1つの公正な学習タスクを最適に解くことの要件に匹敵するが、実際には多くの下流の公平性に制約のある学習問題を効率的に解くために使うことができる。
本手法は, 相互処理群を扱いやすく, 処理後回帰関数の事前処理を一般化し, 不一致群にのみ適用される公平性制約を満たす。
我々の研究は、多重校正回帰関数が'omnipredictors'(すなわち制約のないERM問題を最適に解くために後処理できる)であることを示す最近の研究を拡張した。
関連論文リスト
- Regression under demographic parity constraints via unlabeled post-processing [5.762345156477737]
本稿では,人口統計値に合致する予測を生成する汎用ポストプロセッシングアルゴリズムを提案する。
我々は凸関数の勾配ノルムを正確に制御する必要がある。
提案アルゴリズムは有限サンプル解析と後処理バウンダリによって裏付けられ, 実験結果から理論的知見が得られた。
論文 参考訳(メタデータ) (2024-07-22T08:11:58Z) - Stochastic Optimization Algorithms for Instrumental Variable Regression with Streaming Data [17.657917523817243]
この問題を条件付き最適化問題とみなして,器用変分回帰のためのアルゴリズムを開発し,解析する。
最小二乗変数回帰の文脈では、我々のアルゴリズムは行列逆転やミニバッチを必要としない。
任意の$iota>0$に対して$mathcalO(log T/T)$と$mathcalO(1/T1-iota)$の順の収束率を導出する。
論文 参考訳(メタデータ) (2024-05-29T19:21:55Z) - How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression? [92.90857135952231]
様々なタスクで事前訓練されたトランスフォーマーは、顕著なインコンテキスト学習(ICL)能力を示す。
線形回帰のための線形パラメータ化単一層線形アテンションモデルの事前学習を行う。
論文 参考訳(メタデータ) (2023-10-12T15:01:43Z) - Smoothly Giving up: Robustness for Simple Models [30.56684535186692]
このようなモデルをトレーニングするアルゴリズムの例としては、ロジスティック回帰とブースティングがある。
我々は、標準凸損失関数間のチューニングを行う、$Served-Servedジョイント凸損失関数を用いて、そのようなモデルを堅牢に訓練する。
また、ロジスティック回帰のためのCOVID-19データセットを強化し、複数の関連ドメインにまたがる効果のアプローチを強調します。
論文 参考訳(メタデータ) (2023-02-17T19:48:11Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
本稿では,RLアルゴリズムによって収集されたデータポイントの情報取得量を測定する,効率的なオンラインサブサンプリングフレームワークを確立する。
複雑性バウンド関数クラスを持つ値ベースのメソッドの場合、$proptooperatornamepolylog(K)$ timesに対してのみポリシーを更新する必要がある。
少なくとも$Omega(K)$倍のポリシーを更新する既存のアプローチとは対照的に、当社のアプローチはポリシーの解決における最適化コールの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-06-14T07:36:25Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - A Hypergradient Approach to Robust Regression without Correspondence [85.49775273716503]
本稿では,入力データと出力データとの対応が不十分な回帰問題について考察する。
ほとんどの既存手法はサンプルサイズが小さい場合にのみ適用できる。
シャッフル回帰問題に対する新しい計算フレームワークであるROBOTを提案する。
論文 参考訳(メタデータ) (2020-11-30T21:47:38Z) - Active Sampling for Min-Max Fairness [28.420886416425077]
min-maxフェアネスを最適化するための簡易なアクティブサンプリングと再重み付け手法を提案する。
実装の容易さとロバストな定式化の汎用性により、不備な群におけるモデル性能を改善するための魅力的な選択肢となる。
線形回帰法やロジスティック回帰法のような凸学習問題に対しては、分極値解への収束率を証明し、きめ細かな解析を行う。
論文 参考訳(メタデータ) (2020-06-11T23:57:55Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
カラムサブセット選択、部分空間近似、射影クラスタリング、および空間サブリニアを$n$で使用するターンタイルストリームのボリュームに対する最初の相対エラーアルゴリズムを提供する。
我々の適応的なサンプリング手法は、様々なデータ要約問題に多くの応用をもたらしており、これは最先端を改善するか、より緩和された行列列モデルで以前に研究されただけである。
論文 参考訳(メタデータ) (2020-04-23T05:00:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。