Sampling for network function learning
- URL: http://arxiv.org/abs/2209.07342v1
- Date: Sun, 11 Sep 2022 11:22:34 GMT
- Title: Sampling for network function learning
- Authors: Li-Chun Zhang
- Abstract summary: We consider the feasibility of graph sampling approach to network function learning.
This can be useful either when the edges are unknown to start with or the graph is too large (or dynamic) to be processed entirely.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a valued graph, where both the nodes and the edges of the graph are
associated with one or several values, any network function for a given node
must be defined in terms of that node and its connected nodes in the graph.
Generally, applying the same definition to the whole graph or any given
subgraph of it would result in systematically different network functions. In
this paper we consider the feasibility of graph sampling approach to network
function learning, as well as the corresponding learning methods based on the
sample graphs. This can be useful either when the edges are unknown to start
with or the graph is too large (or dynamic) to be processed entirely.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - Learning Adaptive Neighborhoods for Graph Neural Networks [45.94778766867247]
Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data.
We propose a novel end-to-end differentiable graph generator which builds graph topologies.
Our module can be readily integrated into existing pipelines involving graph convolution operations.
arXiv Detail & Related papers (2023-07-18T08:37:25Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - COLOGNE: Coordinated Local Graph Neighborhood Sampling [1.6498361958317633]
replacing discrete unordered objects such as graph nodes by real-valued vectors is at the heart of many approaches to learning from graph data.
We address the problem of learning discrete node embeddings such that the coordinates of the node vector representations are graph nodes.
This opens the door to designing interpretable machine learning algorithms for graphs as all attributes originally present in the nodes are preserved.
arXiv Detail & Related papers (2021-02-09T11:39:06Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Natural Graph Networks [80.77570956520482]
We show that the more general concept of naturality is sufficient for a graph network to be well-defined.
We define global and local natural graph networks, the latter of which are as scalable as conventional message passing graph neural networks.
arXiv Detail & Related papers (2020-07-16T14:19:06Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.