論文の概要: Test-Time Training with Masked Autoencoders
- arxiv url: http://arxiv.org/abs/2209.07522v1
- Date: Thu, 15 Sep 2022 17:59:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-16 12:23:38.516487
- Title: Test-Time Training with Masked Autoencoders
- Title(参考訳): マスク付きオートエンコーダによるテスト時間トレーニング
- Authors: Yossi Gandelsman, Yu Sun, Xinlei Chen, Alexei A. Efros
- Abstract要約: テストタイムトレーニングは、セルフスーパービジョンを使用して各テスト入力のモデルを最適化することで、新しいテスト分布をオンザフライに適用する。
本稿では,この一サンプル学習問題に対してマスク付きオートエンコーダを用いる。
- 参考スコア(独自算出の注目度): 54.983147122777574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Test-time training adapts to a new test distribution on the fly by optimizing
a model for each test input using self-supervision. In this paper, we use
masked autoencoders for this one-sample learning problem. Empirically, our
simple method improves generalization on many visual benchmarks for
distribution shifts. Theoretically, we characterize this improvement in terms
of the bias-variance trade-off.
- Abstract(参考訳): テストタイムトレーニングは、セルフスーパービジョンを使用して各テスト入力のモデルを最適化することで、新しいテスト分布をオンザフライに適用する。
本稿では,この一サンプル学習問題に対してマスク付きオートエンコーダを用いる。
実験的に,本手法は分布シフトに対する多くの視覚的ベンチマークの一般化を改善する。
理論的には、この改善をバイアス分散トレードオフの観点から特徴づける。
関連論文リスト
- Point-TTA: Test-Time Adaptation for Point Cloud Registration Using
Multitask Meta-Auxiliary Learning [17.980649681325406]
我々は、ポイントクラウド登録(PCR)のための新しいテスト時間適応フレームワークであるPoint-TTAを提案する。
我々のモデルは、テストデータの事前の知識を必要とせずに、テスト時に目に見えない分布に適応することができる。
訓練中は, 補助タスクによる適応モデルにより主タスクの精度が向上するように, メタ補助学習アプローチを用いて訓練を行う。
論文 参考訳(メタデータ) (2023-08-31T06:32:11Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
新たなパラダイムであるテスト時適応は、事前トレーニングされたモデルをテスト中にラベルのないデータに適用し、予測を行う可能性がある。
このパラダイムの最近の進歩は、推論に先立って自己適応モデルのトレーニングにラベルのないデータを活用するという大きな利点を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-03-27T16:32:21Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
テスト時間プロンプトチューニング (TPT) を提案し, 適応的なプロンプトを1つのテストサンプルで学習する。
TPTはCLIPのゼロショットトップ1の精度を平均3.6%改善する。
クロスデータセットの一般化を目に見えないカテゴリで評価する際、PTは追加のトレーニングデータを使用する最先端のアプローチと同等に機能する。
論文 参考訳(メタデータ) (2022-09-15T17:55:11Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
本研究では,単体テストサンプルに適用可能な自己教師付きトレーニングアルゴリズムSwaVの新たな改良を提案する。
ベンチマークデータセットCIFAR10-Cにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T05:43:06Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Robust Sampling in Deep Learning [62.997667081978825]
ディープラーニングは、オーバーフィッティングを減らし、一般化を改善するために正規化メカニズムを必要とする。
分散ロバスト最適化に基づく新しい正規化手法によりこの問題に対処する。
トレーニング中は、最悪のサンプルが最適化に最も貢献するものであるように、その正確性に応じてサンプルの選択が行われる。
論文 参考訳(メタデータ) (2020-06-04T09:46:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。