論文の概要: Improving Language Model Prompting in Support of Semi-autonomous Task
Learning
- arxiv url: http://arxiv.org/abs/2209.07636v1
- Date: Tue, 13 Sep 2022 15:36:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 17:14:31.662943
- Title: Improving Language Model Prompting in Support of Semi-autonomous Task
Learning
- Title(参考訳): 半自律型タスク学習支援のための言語モデルプロンプトの改善
- Authors: James R. Kirk, Robert E. Wray, Peter Lindes, John E. Laird
- Abstract要約: 言語モデル(LLM)は、新しいタスク能力を取得するために必要なエージェントの知識の源としてポテンシャルを提供する。
本稿では,新しいタスクを学習するエージェントに対して有用なLLM応答をもたらす手がかりを構築できる新しいエージェント機能への取り組みについて述べる。
- 参考スコア(独自算出の注目度): 6.021787236982658
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Language models (LLMs) offer potential as a source of knowledge for agents
that need to acquire new task competencies within a performance environment. We
describe efforts toward a novel agent capability that can construct cues (or
"prompts") that result in useful LLM responses for an agent learning a new
task. Importantly, responses must not only be "reasonable" (a measure used
commonly in research on knowledge extraction from LLMs) but also specific to
the agent's task context and in a form that the agent can interpret given its
native language capacities. We summarize a series of empirical investigations
of prompting strategies and evaluate responses against the goals of targeted
and actionable responses for task learning. Our results demonstrate that
actionable task knowledge can be obtained from LLMs in support of online agent
task learning.
- Abstract(参考訳): 言語モデル(llms)は、パフォーマンス環境で新しいタスクの能力を取得する必要があるエージェントの知識の源となる可能性を提供します。
我々は,新しいタスクを学習するエージェントに対して有用な llm 応答をもたらす手掛かり(あるいは "prompts" )を構築できる新しいエージェント能力への取り組みについて述べる。
重要なことに、応答は「理にかなっている」(llmから知識を抽出する研究で一般的に用いられる尺度)だけでなく、エージェントのタスクコンテキストに特有なものであり、エージェントが固有の言語能力によって解釈できる形でなければならない。
我々は,課題学習における目標と行動可能な回答に対して,戦略の促しと反応の評価に関する経験的調査をまとめる。
本結果は,オンラインエージェントタスク学習を支援するために,LCMから実行可能なタスク知識を得ることができることを示す。
関連論文リスト
- Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
本稿では,PPOを用いた強化学習(RL)の実現可能性について検討する。
我々は,生成した出力の質を自動的に評価するために,明示的な報酬関数をプログラムできるプログラミングなどの形式言語で表されるタスクに焦点をあてる。
以上の結果から,2つの形式言語タスクに対する純粋なRLベースのトレーニングは困難であり,単純な算術タスクにおいても成功は限られていることがわかった。
論文 参考訳(メタデータ) (2024-10-22T15:59:58Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
大規模言語モデル(LLM)は複雑な推論タスクにおいて大きな可能性を証明していますが、より高度な課題に取り組むには不十分です。
この不適切さは、主に言語エージェントのアクション知識が組み込まれていないことに起因する。
我々は、明示的な行動知識を取り入れることで、LLMの計画能力を高めるために設計された新しいアプローチであるKnowAgentを紹介する。
論文 参考訳(メタデータ) (2024-03-05T16:39:12Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Large Language Model as a Policy Teacher for Training Reinforcement Learning Agents [16.24662355253529]
LLM(Large Language Models)は、高レベルの命令を提供することによって、シーケンシャルな意思決定タスクに対処することができる。
LLMは、特にリアルタイムな動的環境において、特定のターゲット問題に対処する専門性を欠いている。
LLMベースの教師エージェントからの指示を用いて、より小規模で専門的なRLエージェントを訓練することで、これらの課題に対処する新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-22T13:15:42Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
実験学習エージェント(ExpeL)を導入し、パラメトリック更新を必要とせずにエージェント体験から学習できるようにする。
我々のエージェントは、経験を自律的に収集し、学習課題の集合から自然言語を用いて知識を抽出する。
推論において、エージェントは抽出された洞察と過去の経験をリコールし、情報的決定を行う。
論文 参考訳(メタデータ) (2023-08-20T03:03:34Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z) - Improving Knowledge Extraction from LLMs for Task Learning through Agent
Analysis [4.055489363682198]
大規模言語モデル(LLM)は、タスク学習の知識源として大きな可能性を秘めている。
プロンプト工学は、LLMから知識を引き出すのに有効であることが示されているが、同時に、新しいタスクを具現化したエージェント学習のための、適切な、状況に根ざした知識を得るには不十分である。
本稿では,認知エージェントアプローチであるSTARSについて述べる。これは,迅速なエンジニアリングを拡張し,その制限を緩和し,エージェントがネイティブ言語能力,具体化,環境,ユーザ嗜好に適合する新たなタスク知識を取得できるようにする。
論文 参考訳(メタデータ) (2023-06-11T20:50:14Z) - Multitasking Inhibits Semantic Drift [46.71462510028727]
潜在言語政策(LLP)における学習のダイナミクスについて検討する。
LLPは長距離強化学習の課題を解くことができる。
これまでの研究では、LPPトレーニングは意味的ドリフトの傾向が見られた。
論文 参考訳(メタデータ) (2021-04-15T03:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。