論文の概要: Sequential Bayesian Optimization for Adaptive Informative Path Planning
with Multimodal Sensing
- arxiv url: http://arxiv.org/abs/2209.07660v1
- Date: Fri, 16 Sep 2022 00:50:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 13:07:47.427575
- Title: Sequential Bayesian Optimization for Adaptive Informative Path Planning
with Multimodal Sensing
- Title(参考訳): マルチモーダルセンシングを用いた適応的情報経路計画のための逐次ベイズ最適化
- Authors: Joshua Ott, Edward Balaban, Mykel J. Kochenderfer
- Abstract要約: 本稿では,複数のセンサを備えたエージェントの問題点について考察する。
エージェントの目標は、未知の、部分的に観測可能な環境において、環境を探索し、そのリソース制約の対象となる情報を集めることである。
我々は,AIPPMS問題を,ガウス過程の信念を用いたマルコフ決定過程として定式化し,オンラインプランニングによる逐次ベイズ最適化アプローチを用いて解決する。
- 参考スコア(独自算出の注目度): 34.86734745942814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adaptive Informative Path Planning with Multimodal Sensing (AIPPMS) considers
the problem of an agent equipped with multiple sensors, each with different
sensing accuracy and energy costs. The agent's goal is to explore the
environment and gather information subject to its resource constraints in
unknown, partially observable environments. Previous work has focused on the
less general Adaptive Informative Path Planning (AIPP) problem, which considers
only the effect of the agent's movement on received observations. The AIPPMS
problem adds additional complexity by requiring that the agent reasons jointly
about the effects of sensing and movement while balancing resource constraints
with information objectives. We formulate the AIPPMS problem as a belief Markov
decision process with Gaussian process beliefs and solve it using a sequential
Bayesian optimization approach with online planning. Our approach consistently
outperforms previous AIPPMS solutions by more than doubling the average reward
received in almost every experiment while also reducing the root-mean-square
error in the environment belief by 50%. We completely open-source our
implementation to aid in further development and comparison.
- Abstract(参考訳): マルチモーダルセンシング(aippm)を用いた適応的情報経路計画(adaptive informative path planning)は、複数のセンサを備えたエージェントの問題を考える。
エージェントの目標は、未知で部分的に観測可能な環境において、環境を探索し、リソース制約の対象となる情報を集めることである。
従来の研究は、エージェントの動きが受信した観察に与える影響のみを考慮する、より一般的な適応的情報経路計画(AIPP)の問題に焦点を当ててきた。
AIPPMS問題は、リソース制約と情報目的とのバランスを保ちながら、エージェントが検知と移動の影響を共同で理由づけることを要求することで、さらなる複雑さを増す。
我々は,AIPPMS問題を,ガウス過程の信念を用いたマルコフ決定過程として定式化し,オンラインプランニングによる逐次ベイズ最適化アプローチを用いて解決する。
我々のアプローチは、ほぼすべての実験で得られた平均報酬を2倍以上にすることで、従来のAIPPMSソリューションよりも一貫して優れています。
さらなる開発と比較を支援するために、実装を完全にオープンソースにしています。
関連論文リスト
- Increasing the Value of Information During Planning in Uncertain Environments [0.0]
我々は,情報収集行動の価値をよりよく反映して,最先端のオンライン計画を改善する新しいアルゴリズムを開発した。
結果,新しいアルゴリズムはPOMCPよりも高い性能を示した。
論文 参考訳(メタデータ) (2024-09-14T22:04:34Z) - An Improved Artificial Fish Swarm Algorithm for Solving the Problem of
Investigation Path Planning [8.725702964289479]
多集団差分進化(DE-CAFSA)に基づくカオス人工魚群アルゴリズムを提案する。
適応的な視野とステップサイズ調整を導入し、ランダムな動作を2オプト操作に置き換え、カオス理論と準最適解を導入する。
実験結果から、DECAFSAは、異なる大きさの様々な公開データセット上で、他のアルゴリズムよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-20T09:35:51Z) - Energy-Guided Continuous Entropic Barycenter Estimation for General Costs [95.33926437521046]
任意のOTコスト関数に対して連続的エントロピーOT(EOT)バリセンタを近似する新しいアルゴリズムを提案する。
本手法は、弱いOTに基づくEOT問題の二重再構成に基づいている。
論文 参考訳(メタデータ) (2023-10-02T11:24:36Z) - Light Unbalanced Optimal Transport [69.18220206873772]
既存の解法は、原理に基づいているか、複数のニューラルネットワークを含む複雑な最適化目標を重み付けしている。
我々は,この解法がUEOT解の普遍近似を提供し,一般化限界を得ることを示す。
論文 参考訳(メタデータ) (2023-03-14T15:44:40Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
本稿では,逐次情報設計の新たなモデル,すなわちマルコフ説得過程(MPP)を提案する。
MPPのプランニングは、ミオピックレシーバーに同時に説得されるシグナルポリシーを見つけ、送信者の最適な長期累積ユーティリティを誘導する、というユニークな課題に直面している。
我々は,楽観主義と悲観主義の両原理の新たな組み合わせを特徴とする,実証可能な効率のよい非回帰学習アルゴリズム,Optimism-Pessimism Principle for Persuasion Process (OP4) を設計する。
論文 参考訳(メタデータ) (2022-02-22T05:41:43Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
我々は、強化学習を通して解決された逐次決定問題(MDP)の文脈における予測列最適化フレームワークについて検討した。
2つの重要な計算課題は、意思決定中心の学習をMDPに適用することである。
論文 参考訳(メタデータ) (2021-06-06T23:53:31Z) - Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity,
and Optimism [33.116006446428756]
遅延と非同期性を考慮したマルチエージェントオンライン学習問題の研究を行った。
エージェントレベルとネットワークレベルの両方で、最適な後悔の境界を持つ適応学習戦略を導き出します。
論文 参考訳(メタデータ) (2020-12-21T18:55:55Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
本稿では,データ収集ミッションを定義するシナリオパラメータの深い変化に適応できるマルチエージェント強化学習(MARL)手法を提案する。
提案するネットワークアーキテクチャにより,データ収集タスクを慎重に分割することで,エージェントが効果的に協調できることを示す。
論文 参考訳(メタデータ) (2020-10-23T14:59:30Z) - Adaptive Informative Path Planning with Multimodal Sensing [36.16721115973077]
AIPPMS(マルチモーダルセンシング用MS)
AIPPMSを部分的に観測可能なマルコフ決定プロセス(POMDP)として、オンラインプランニングで解決する。
シミュレーションされた検索・救助シナリオと,従来のRockSample問題への挑戦的拡張の2つの領域について,本手法の評価を行った。
論文 参考訳(メタデータ) (2020-03-21T20:28:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。