Dynamic phases induced by two-level system defects on driven qubits
- URL: http://arxiv.org/abs/2209.07677v2
- Date: Thu, 22 Aug 2024 09:56:58 GMT
- Title: Dynamic phases induced by two-level system defects on driven qubits
- Authors: Yanxiang Wang, Ziyang You, Hou Ian,
- Abstract summary: Recent experimental evidences point to two-level defects as the major constituents of decoherence in superconducting qubits.
How these defects affect the qubit evolution with the presence of external driving is less well understood.
We analyze the decoherence dynamics in the continuous coherent state space induced by the driving.
- Score: 1.515687944002438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent experimental evidences point to two-level defects, located in the oxides and on the interfaces of the Josephson junctions, as the major constituents of decoherence in superconducting qubits. How these defects affect the qubit evolution with the presence of external driving is less well understood since the semiclassical qubit-field coupling renders the Jaynes-Cummings model for qubit-defect coupling undiagonalizable. We analyze the decoherence dynamics in the continuous coherent state space induced by the driving and solve the master equation endowed with an extra decay-cladded driving term via a Fokker-Planck equation. The solutions for diffusion propagators as Gaussian distributions show four distinct dynamic phases: four types of convergence paths to limit cycles of varying radius by the distribution mean, which are determined by the competing external driving and the defect decays. The qubit trajectory resulted from these solutions is a super-Poissonian over displac ed Fock states, which reduces to a Gibbs state of effective temperature decided by the defect at zero driving limit. Further, the Poincare map shows the dependence of the rate of convergence on the initial state. In other words, the qubit evolution can serve as an indicator of the defect coupling strength through the variation of the driving strength as a parameter.
Related papers
- Streamline controlled rectification of supercurrent in thin-film asymmetric weak links [39.58317527488534]
We study the supercurrent diode effect (SDE) in mesoscopic superconducting weak links formed by asymmetric Dayem bridges.<n>By implementing controlled geometric defects at the junction between the constriction and superconducting leads, we induce current crowding and disrupt spatial symmetry.<n>Our findings advocate for mesoscopic Dayem bridges as a flexible platform for designing and controlling superconducting diode functionalities.
arXiv Detail & Related papers (2025-07-16T14:26:18Z) - Tripartite Entanglement in Multimode Cavity Quantum Electrodynamics [37.69303106863453]
We numerically investigate the generation and dynamics of tripartite entanglement among qubits in multimode cavity quantum electrodynamics.<n>Our results hold promise for the development of entanglement-based quantum networking protocols and quantum memories.
arXiv Detail & Related papers (2025-07-16T03:53:14Z) - Statistics of Strongly Coupled Defects in Superconducting Qubits [0.0]
We measure the energy relaxation of flux-tunable transmons over a range of operating frequencies.<n>Our results are consistent with loss dominated by discrete interfacial defects.<n>We are able to localize the dominant defects to within 500 nm of the qubit junctions.
arXiv Detail & Related papers (2025-05-30T20:05:19Z) - Constrained many-body phases in a $\mathbb{Z}_2$-Higgs lattice gauge theory [39.58317527488534]
We study a one-dimensional $mathbbZ$ lattice gauge theory coupled to soft-core bosonic matter at unit filling.
Through a combination of analytical perturbative approaches, we uncover a rich phase diagram driven by gauge-field-mediated resonant pair hopping.
The presence of a bunching state with large number fluctuations motivates experimental realizations in hybrid boson-qubit quantum simulation platforms.
arXiv Detail & Related papers (2025-03-05T19:00:07Z) - Flux-pump induced degradation of $T_1$ for dissipative cat qubits [42.110730614476104]
Dissipative stabilization of cat qubits autonomously corrects for bit flip errors by ensuring that reservoir-engineered two-photon losses dominate over other mechanisms inducing phase flip errors.
We analyze the dressing of relaxation processes under drives in time-dependent Schrieffer-Wolff perturbation theory for weakly anharmonic bosonic degrees of freedom.
We find that spurious single-photon decay rates can increase under the action of the parametric pump that generates the required interactions for cat-qubit stabilization.
arXiv Detail & Related papers (2024-10-01T18:02:16Z) - Qualitatively altered driven Dicke superradiance in extended systems due to infinitesimal perturbations [0.0]
The driven Dicke model, with interesting quantum phases induced by parameterized driving, has been intensively studied in cavities.
We simulate superconducting qubits coupled to a 1D waveguide as the extended system and theoretically investigate four kinds of perturbations.
arXiv Detail & Related papers (2024-08-09T08:35:15Z) - Mitigating Losses of Superconducting Qubits Strongly Coupled to Defect Modes [28.49668795915129]
We investigate strategies to mitigate losses to the family of defects that strongly couple to qubits.
We show that the frequency configuration of the defects is rearranged by warming up the sample to room temperature.
We then explore methods for fabricating qubits with a reduced number of strongly coupled defect modes.
arXiv Detail & Related papers (2024-07-26T14:02:57Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Dissipation entanglement control of two coupled qubits via strong
driving fields [0.0]
The entanglement state generation and destruction during the formation of the multiphoton transitions regions are studied.
The technique is proposed to adjust the amplitudes of dc- and ac-fields for effective control of the entanglement between qubit states.
arXiv Detail & Related papers (2023-10-31T07:13:45Z) - Two Anderson impurities coupled through a superconducting island: charge
stability diagrams and double impurity qubit [0.0]
We present a model of two Anderson impurities coupled to and through a superconducting island.
We explore the effect of the model parameters in the subspaces with total even and odd occupancy.
For total odd electron parity, we identify a device tuning, in which the splitting between the two lowest energy states is highly insensitive to changes of the chemical potentials.
arXiv Detail & Related papers (2023-03-25T09:30:15Z) - Manipulating solid-state spin concentration through charge transport [17.571298724628114]
Solid-state spin defects are attractive candidates for developing quantum sensors and simulators.
We develop a wide-field imaging setup integrated with a fast single photon detector array.
We demonstrate the concentration of the dominant spin defects by a factor of 2 while keeping the $T$ increase of the NV center.
arXiv Detail & Related papers (2023-02-24T16:53:28Z) - Frustration shapes multi-channel Kondo physics: a star graph perspective [0.31317409221921144]
We study the overscreened multi-channel Kondo (MCK) model using the recently developed unitary renormalization group (URG) technique.
Our results display the importance of ground state degeneracy in explaining various important properties.
arXiv Detail & Related papers (2022-05-02T10:21:24Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Spectrum of localized states in fermionic chains with defect and
adiabatic charge pumping [68.8204255655161]
We study the localized states of a generic quadratic fermionic chain with finite-range couplings.
We analyze the robustness of the connection between bands against perturbations of the Hamiltonian.
arXiv Detail & Related papers (2021-07-20T18:44:06Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.