Highly efficient and indistinguishable single-photon sources via
phonon-decoupled two-color excitation
- URL: http://arxiv.org/abs/2209.07770v2
- Date: Tue, 16 May 2023 08:12:44 GMT
- Title: Highly efficient and indistinguishable single-photon sources via
phonon-decoupled two-color excitation
- Authors: Luca Vannucci, Niels Gregersen
- Abstract summary: coherent two-color pumping allows for population inversion arbitrarily close to unity in bulk quantum dots.
We calculate very high photon emission into the cavity mode (0.95 photons per pulse) together with excellent indistinguishability (0.975) in a realistic configuration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-photon sources with near-unity efficiency and indistinguishability
play a major role in the development of quantum technologies. However,
on-demand excitation of the emitter imposes substantial limitations to the
source performance. Here, we show that coherent two-color pumping allows for
population inversion arbitrarily close to unity in bulk quantum dots thanks to
a decoupling effect between the emitter and its phonon bath. Driving a
micropillar single-photon source with this scheme, we calculate very high
photon emission into the cavity mode (0.95 photons per pulse) together with
excellent indistinguishability (0.975) in a realistic configuration, thereby
removing the limitations imposed by the excitation scheme on single-photon
source engineering.
Related papers
- Filter-free high-performance single photon emission from a quantum dot in a Fabry-Perot microcavity [11.420650731006665]
Resonant excitation with Purcell-enhanced single quantum dots (QDs) is a prominent strategy for realizing high performance solid-state single photon sources.
Traditionally, this involves polarization filtering, which limits the achievable polarization directions and the scalability of photonic states.
We have successfully tackled this challenge by employing spatially-orthogonal resonant excitation of QDs, deterministically coupled to monolithic Fabry-Perot microcavities.
The resulting source produces single photons with a simultaneous high extraction efficiency of 0.87, purity of 0.9045(4), and indistinguishability of 0.963(4).
arXiv Detail & Related papers (2024-02-18T15:31:09Z) - Single-photon emitters in WSe$_2$: Critical role of phonons on excitation schemes and indistinguishability [0.0]
We reconstruct the phonon spectral density experienced by WSe$_2$ quantum emitters in the emission process.
We observe near-unity excitation fidelity up to 0.976 (0.997) under near-resonant phonon-assisted excitation.
arXiv Detail & Related papers (2024-02-16T18:55:40Z) - Tunable quantum dots in monolithic Fabry-Perot microcavities for
high-performance single-photon sources [13.880332867320176]
Cavity-enhanced single quantum dots (QDs) are the main approach towards ultra-high-performance solid-state quantum light sources.
Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator.
We have demonstrated a bright single photon source derived from a deterministically coupled QD within this microcavity.
arXiv Detail & Related papers (2023-09-24T15:06:47Z) - Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Unity yield of deterministically positioned quantum dot single photon
sources [0.0]
We report on a platform for the production of single photon devices with a fabrication yield of 100%.
The sources are based on InAsP quantum dots embedded within position-controlled bottom-up InP nanowires.
arXiv Detail & Related papers (2021-10-15T20:55:50Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - On-demand indistinguishable single photons from an efficient and pure
source based on a Rydberg ensemble [48.879585399382435]
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies.
Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking.
In this work, we demonstrate such a source based on a strongly interacting Rydberg system.
arXiv Detail & Related papers (2020-03-04T17:16:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.