Double logistic regression approach to biased positive-unlabeled data
- URL: http://arxiv.org/abs/2209.07787v2
- Date: Tue, 31 Oct 2023 10:57:20 GMT
- Title: Double logistic regression approach to biased positive-unlabeled data
- Authors: Konrad Furma\'nczyk and Jan Mielniczuk and Wojciech Rejchel and
Pawe{\l} Teisseyre
- Abstract summary: We consider parametric approach to the problem of joint estimation of posterior probability and propensity score functions.
Motivated by this, we propose two approaches to their estimation: joint maximum likelihood method and the second approach based on alternating alternating expressions.
Our experimental results show that the proposed methods are comparable or better than the existing methods based on Expectation-Maximisation scheme.
- Score: 3.6594988197536344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Positive and unlabelled learning is an important problem which arises
naturally in many applications. The significant limitation of almost all
existing methods lies in assuming that the propensity score function is
constant (SCAR assumption), which is unrealistic in many practical situations.
Avoiding this assumption, we consider parametric approach to the problem of
joint estimation of posterior probability and propensity score functions. We
show that under mild assumptions when both functions have the same parametric
form (e.g. logistic with different parameters) the corresponding parameters are
identifiable. Motivated by this, we propose two approaches to their estimation:
joint maximum likelihood method and the second approach based on alternating
maximization of two Fisher consistent expressions. Our experimental results
show that the proposed methods are comparable or better than the existing
methods based on Expectation-Maximisation scheme.
Related papers
- Nonparametric estimation of Hawkes processes with RKHSs [1.775610745277615]
This paper addresses nonparametric estimation of nonlinear Hawkes processes, where the interaction functions are assumed to lie in a reproducing kernel space (RKHS)
Motivated by applications in neuroscience, the model allows complex interaction functions, in order to express exciting and inhibiting effects, but also a combination of both.
It shows that our method achieves a better performance compared to related nonparametric estimation techniques and suits neuronal applications.
arXiv Detail & Related papers (2024-11-01T14:26:50Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous process conditioned on the realization of a random intensity function.
Existing implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions.
arXiv Detail & Related papers (2023-06-11T19:48:39Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
We propose a doubly robust two-stage semiparametric difference-in-difference estimator for estimating heterogeneous treatment effects.
The first stage allows a general set of machine learning methods to be used to estimate the propensity score.
In the second stage, we derive the rates of convergence for both the parametric parameter and the unknown function.
arXiv Detail & Related papers (2020-09-07T15:14:29Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z) - Lifted Hybrid Variational Inference [31.441922284854893]
We investigate two approximate lifted variational approaches that are applicable to hybrid domains.
We demonstrate that the proposed variational methods are both scalable and can take advantage of approximate model symmetries.
We present a sufficient condition for the Bethe approximation to yield a non-trivial estimate over the marginal polytope.
arXiv Detail & Related papers (2020-01-08T22:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.