論文の概要: A Comprehensive Benchmark for COVID-19 Predictive Modeling Using
Electronic Health Records in Intensive Care
- arxiv url: http://arxiv.org/abs/2209.07805v4
- Date: Tue, 23 Jan 2024 17:14:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 20:20:46.091953
- Title: A Comprehensive Benchmark for COVID-19 Predictive Modeling Using
Electronic Health Records in Intensive Care
- Title(参考訳): 集中治療における電子健康記録を用いたcovid-19予測モデリングの総合ベンチマーク
- Authors: Junyi Gao, Yinghao Zhu, Wenqing Wang, Yasha Wang, Wen Tang, Ewen M.
Harrison, Liantao Ma
- Abstract要約: 集中治療室における新型コロナウイルス患者のアウトカム特異的長期予測と早期死亡予測の2つの臨床予測課題を提案する。
この2つの課題は、新型コロナウイルス(COVID-19)患者の臨床実践に対応するため、単純で不安定な長寿と死亡予測のタスクから適応される。
我々は、公平で詳細なオープンソースのデータ前処理パイプラインを提案し、2つのタスクで17の最先端予測モデルを評価する。
- 参考スコア(独自算出の注目度): 15.64030213048907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic has posed a heavy burden to the healthcare system
worldwide and caused huge social disruption and economic loss. Many deep
learning models have been proposed to conduct clinical predictive tasks such as
mortality prediction for COVID-19 patients in intensive care units using
Electronic Health Record (EHR) data. Despite their initial success in certain
clinical applications, there is currently a lack of benchmarking results to
achieve a fair comparison so that we can select the optimal model for clinical
use. Furthermore, there is a discrepancy between the formulation of traditional
prediction tasks and real-world clinical practice in intensive care. To fill
these gaps, we propose two clinical prediction tasks, Outcome-specific
length-of-stay prediction and Early mortality prediction for COVID-19 patients
in intensive care units. The two tasks are adapted from the naive
length-of-stay and mortality prediction tasks to accommodate the clinical
practice for COVID-19 patients. We propose fair, detailed, open-source
data-preprocessing pipelines and evaluate 17 state-of-the-art predictive models
on two tasks, including 5 machine learning models, 6 basic deep learning models
and 6 deep learning predictive models specifically designed for EHR data. We
provide benchmarking results using data from two real-world COVID-19 EHR
datasets. One dataset is publicly available without needing any inquiry and
another dataset can be accessed on request. We provide fair, reproducible
benchmarking results for two tasks. We deploy all experiment results and models
on an online platform. We also allow clinicians and researchers to upload their
data to the platform and get quick prediction results using our trained models.
We hope our efforts can further facilitate deep learning and machine learning
research for COVID-19 predictive modeling.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックは世界中の医療システムに重荷を課し、大きな社会的破壊と経済的な損失をもたらした。
電子健康記録(ehr)データを用いた集中治療室におけるcovid-19患者の死亡予測のような臨床予測タスクを行うために、多くのディープラーニングモデルが提案されている。
臨床応用での最初の成功にもかかわらず、現在ベンチマーク結果の欠如により、適切な比較を行い、臨床利用の最適なモデルを選択することができる。
さらに、従来の予測タスクの定式化と集中治療における現実的な臨床実践との間には相違がある。
これらのギャップを埋めるために,集中治療室におけるアウトカム特異的長期予測と早期死亡予測という2つの臨床予測課題を提案する。
この2つのタスクは、covid-19患者の臨床試験に対応するために、naive long-of-stay と death prediction タスクから適応される。
5つの機械学習モデル,6つの基本的なディープラーニングモデル,ehrデータ専用に設計された6つのディープラーニング予測モデルなど,2つのタスクにおいて17の最先端予測モデルを評価する。
2つの現実世界のCOVID-19 EHRデータセットのデータを用いて、ベンチマーク結果を提供する。
1つのデータセットは調査を必要とせずに公開されており、別のデータセットは要求に応じてアクセスすることができる。
2つのタスクに対して公正かつ再現可能なベンチマーク結果を提供する。
すべての実験結果とモデルをオンラインプラットフォームにデプロイします。
また、臨床医や研究者がプラットフォームにデータをアップロードして、トレーニング済みのモデルを使って素早く予測結果を得られるようにもしています。
私たちは、COVID-19予測モデリングのためのディープラーニングと機械学習の研究をさらに促進したいと考えています。
関連論文リスト
- Recent Advances in Predictive Modeling with Electronic Health Records [73.31880579203012]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - Pre-training transformer-based framework on large-scale pediatric claims
data for downstream population-specific tasks [3.1580072841682734]
本研究は、小児科のクレームデータセット全体をトレーニングする一般的な事前学習モデルであるClaim Pre-Training(Claim-PT)フレームワークを提案する。
効果的な知識伝達はタスク対応微調整段階を通じて完了する。
我々は100万人以上の患者記録を持つ実世界のクレームデータセットの実験を行った。
論文 参考訳(メタデータ) (2021-06-24T15:25:41Z) - Deep Learning with Heterogeneous Graph Embeddings for Mortality
Prediction from Electronic Health Records [2.2859570135269625]
我々は、電子健康記録データ上に不均一グラフモデル(HGM)をトレーニングし、結果の埋め込みベクトルをコナールニューラルネットワーク(CNN)モデルに追加情報として使用して、院内死亡率を予測する。
CNNモデルにHGMを追加すると、死亡予測精度が最大4%向上することがわかった。
論文 参考訳(メタデータ) (2020-12-28T02:27:09Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
そこで本研究では,SAPS IIスコアと同じ特徴を用いた深層学習モデルを提案する。
よく知られた臨床データセットである医療情報マート(Medical Information Mart for Intensive Care III)に基づいていくつかの実験が行われている。
論文 参考訳(メタデータ) (2020-12-11T16:27:04Z) - HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in
Intensive Care Units [31.368873375366213]
HOLMESは医療アプリケーションのためのオンラインモデルアンサンブルである。
HOLMESは精度/レイテンシのトレードオフを効率的にナビゲートし、アンサンブルを構成し、モデルアンサンブルパイプラインを提供することができることを示す。
HOLMESは, 小児心ICUデータにおけるリスク予測タスクにおいて, 64ベッドシミュレーションにおいて95%以上の予測精度とサブ秒レイテンシで検証した。
論文 参考訳(メタデータ) (2020-08-10T12:38:46Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。