論文の概要: Deep Learning with Heterogeneous Graph Embeddings for Mortality
Prediction from Electronic Health Records
- arxiv url: http://arxiv.org/abs/2012.14065v1
- Date: Mon, 28 Dec 2020 02:27:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 11:00:26.470153
- Title: Deep Learning with Heterogeneous Graph Embeddings for Mortality
Prediction from Electronic Health Records
- Title(参考訳): 電子カルテからの死亡予測のための不均一グラフ埋め込みを用いた深層学習
- Authors: Tingyi Wanyan, Hossein Honarvar, Ariful Azad, Ying Ding, Benjamin S.
Glicksberg
- Abstract要約: 我々は、電子健康記録データ上に不均一グラフモデル(HGM)をトレーニングし、結果の埋め込みベクトルをコナールニューラルネットワーク(CNN)モデルに追加情報として使用して、院内死亡率を予測する。
CNNモデルにHGMを追加すると、死亡予測精度が最大4%向上することがわかった。
- 参考スコア(独自算出の注目度): 2.2859570135269625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational prediction of in-hospital mortality in the setting of an
intensive care unit can help clinical practitioners to guide care and make
early decisions for interventions. As clinical data are complex and varied in
their structure and components, continued innovation of modeling strategies is
required to identify architectures that can best model outcomes. In this work,
we train a Heterogeneous Graph Model (HGM) on Electronic Health Record data and
use the resulting embedding vector as additional information added to a
Convolutional Neural Network (CNN) model for predicting in-hospital mortality.
We show that the additional information provided by including time as a vector
in the embedding captures the relationships between medical concepts, lab
tests, and diagnoses, which enhances predictive performance. We find that
adding HGM to a CNN model increases the mortality prediction accuracy up to
4\%. This framework serves as a foundation for future experiments involving
different EHR data types on important healthcare prediction tasks.
- Abstract(参考訳): 集中治療ユニットの設定における院内死亡率の計算的予測は、臨床医が治療を指導し、介入の早期決定を行うのに役立つ。
臨床データの構造とコンポーネントは複雑で多様であるため、最適な結果をモデル化できるアーキテクチャを特定するには、モデリング戦略の継続的な革新が必要である。
本研究では,電子健康記録データに基づく異種グラフモデル(hgm)を訓練し,その埋め込みベクトルを畳み込みニューラルネットワーク(cnn)モデルに追加情報として用いることにより,病院内死亡率を予測する。
組込みのベクターとしての時間を含む付加情報が,医療概念,検査,診断の関係を捉え,予測性能を高めることを示す。
cnnモデルにhgmを添加すると死亡率予測精度が最大4\%向上することがわかった。
このフレームワークは、重要な医療予測タスクに様々なehrデータ型を含む将来の実験の基礎となる。
関連論文リスト
- Evaluating the Predictive Features of Person-Centric Knowledge Graph Embeddings: Unfolding Ablation Studies [0.757843972001219]
そこで本研究では,MIMIC-IIIデータセットから得られた構造化情報と非構造化情報を用いて学習したGNNモデルの結果を体系的に検証する手法を提案する。
本研究は,PKGにおける読み出し予測の課題に対する予測的特徴の同定におけるこのアプローチの堅牢性を示す。
論文 参考訳(メタデータ) (2024-08-27T09:48:25Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Knowledge Graph Representations to enhance Intensive Care Time-Series
Predictions [4.660203987415476]
提案手法は,ICUデータと医療知識を統合し,臨床意思決定モデルを改善する。
グラフ表現とバイタルサインと臨床報告を組み合わせることで、パフォーマンスを向上させる。
我々のモデルには、知識グラフノードが予測にどのように影響するかを理解するための解釈可能性コンポーネントが含まれています。
論文 参考訳(メタデータ) (2023-11-13T09:11:55Z) - Graph data modelling for outcome prediction in oropharyngeal cancer
patients [38.37247384790338]
グラフニューラルネットワーク(GNN)は、疾患の分類と予後予測のタスクにおいて、医療分野でますます人気が高まっている。
口腔咽頭癌(OPC)患者の2次予後予測のためのインダクティブ・ラーニング・セットアップで検討した患者ハイパーグラフ・ネットワーク(PHGN)を提案する。
論文 参考訳(メタデータ) (2023-10-04T16:09:35Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - A Comprehensive Benchmark for COVID-19 Predictive Modeling Using
Electronic Health Records in Intensive Care [15.64030213048907]
集中治療室における新型コロナウイルス患者のアウトカム特異的長期予測と早期死亡予測の2つの臨床予測課題を提案する。
この2つの課題は、新型コロナウイルス(COVID-19)患者の臨床実践に対応するため、単純で不安定な長寿と死亡予測のタスクから適応される。
我々は、公平で詳細なオープンソースのデータ前処理パイプラインを提案し、2つのタスクで17の最先端予測モデルを評価する。
論文 参考訳(メタデータ) (2022-09-16T09:09:15Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
異種臨床データを扱うグラフ変換器を用いたネットワークを提案する。
自己教師型, 移動学習環境において, 事前学習方式の利点を示す。
論文 参考訳(メタデータ) (2022-07-21T16:59:09Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。