Single Image Deraining via Rain-Steaks Aware Deep Convolutional Neural
Network
- URL: http://arxiv.org/abs/2209.07808v2
- Date: Tue, 20 Sep 2022 13:17:33 GMT
- Title: Single Image Deraining via Rain-Steaks Aware Deep Convolutional Neural
Network
- Authors: Chaobing Zheng, Yuwen Li, Shiqian Wu
- Abstract summary: An improved weighted guided image filter (iWGIF) is proposed to extract high frequency information from a rainy image.
The high frequency information mainly includes rain steaks and noise, and it can guide the rain steaks aware deep convolutional neural network (RSADCNN) to pay more attention to rain steaks.
- Score: 16.866000078306815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is challenging to remove rain-steaks from a single rainy image because the
rain steaks are spatially varying in the rainy image. This problem is studied
in this paper by combining conventional image processing techniques and deep
learning based techniques. An improved weighted guided image filter (iWGIF) is
proposed to extract high frequency information from a rainy image. The high
frequency information mainly includes rain steaks and noise, and it can guide
the rain steaks aware deep convolutional neural network (RSADCNN) to pay more
attention to rain steaks. The efficiency and explain-ability of RSADNN are
improved. Experiments show that the proposed algorithm significantly
outperforms state-of-the-art methods on both synthetic and real-world images in
terms of both qualitative and quantitative measures. It is useful for
autonomous navigation in raining conditions.
Related papers
- TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
This study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration.
Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, but also finely adapt to complicated and diverse practical rainy images.
Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks.
arXiv Detail & Related papers (2024-03-15T03:27:39Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - Single Image Deraining via Feature-based Deep Convolutional Neural
Network [13.39233717329633]
A single image deraining algorithm based on the combination of data-driven and model-based approaches is proposed.
Experiments show that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both qualitative and quantitative measures.
arXiv Detail & Related papers (2023-05-03T13:12:51Z) - Joint Depth Estimation and Mixture of Rain Removal From a Single Image [24.009353523566162]
We propose an effective image deraining paradigm for Mixture of rain REmoval, called DEMore-Net.
This study explores normalization approaches in image deraining tasks and introduces a new Hybrid Normalization Block (HNB) to enhance the deraining performance of DEMore-Net.
arXiv Detail & Related papers (2023-03-31T02:05:45Z) - Deep Single Image Deraining using An Asymetric Cycle Generative and
Adversarial Framework [16.59494337699748]
We propose a novel Asymetric Cycle Generative and Adrial framework (ACGF) for single image deraining.
ACGF trains on both synthetic and real rainy images while simultaneously capturing both rain streaks and fog features.
Experiments on benchmark rain-fog and rain datasets show that ACGF outperforms state-of-the-art deraining methods.
arXiv Detail & Related papers (2022-02-19T16:14:10Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
We specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet)
RCDNet embeds the intrinsic priors of rain streaks and has clear interpretability.
By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted.
arXiv Detail & Related papers (2021-07-14T16:08:11Z) - Beyond Monocular Deraining: Parallel Stereo Deraining Network Via
Semantic Prior [103.49307603952144]
Most existing de-rain algorithms use only one single input image and aim to recover a clean image.
We present a Paired Rain Removal Network (PRRNet), which exploits both stereo images and semantic information.
Experiments on both monocular and the newly proposed stereo rainy datasets demonstrate that the proposed method achieves the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-09T04:15:10Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
This study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks.
arXiv Detail & Related papers (2020-05-19T05:52:13Z) - Physical Model Guided Deep Image Deraining [10.14977592107907]
Single image deraining is an urgent task because the degraded rainy image makes many computer vision systems fail to work.
We propose a novel network based on physical model guided learning for single image deraining.
arXiv Detail & Related papers (2020-03-30T07:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.