TRG-Net: An Interpretable and Controllable Rain Generator
- URL: http://arxiv.org/abs/2403.09993v2
- Date: Mon, 29 Apr 2024 08:55:45 GMT
- Title: TRG-Net: An Interpretable and Controllable Rain Generator
- Authors: Zhiqiang Pang, Hong Wang, Qi Xie, Deyu Meng, Zongben Xu,
- Abstract summary: This study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration.
Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, but also finely adapt to complicated and diverse practical rainy images.
Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks.
- Score: 61.2760968459789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring and modeling rain generation mechanism is critical for augmenting paired data to ease training of rainy image processing models. Against this task, this study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration and well encodes the learning of the fundamental rain factors (i.e., shape, orientation, length, width and sparsity) explicitly into the deep network. Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, like conventional artificial strategies, but also finely adapt to complicated and diverse practical rainy images, like deep learning methods. By rationally adopting filter parameterization technique, we first time achieve a deep network that is finely controllable with respect to rain factors and able to learn the distribution of these factors purely from data. Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks compared to current state-of-the-art rain generation methods. Besides, the paired data augmentation experiments, including both in-distribution and out-of-distribution (OOD), further validate the diversity of samples generated by our model for in-distribution deraining and OOD generalization tasks.
Related papers
- Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
We propose RainDiff, the first real-world image deraining paradigm based on diffusion models.
We introduce a stable and non-adversarial unpaired cycle-consistent architecture that can be trained, end-to-end, with only unpaired data for supervision.
We also propose a degradation-conditioned diffusion model that refines the desired output via a diffusive generative process conditioned by learned priors of multiple rain degradations.
arXiv Detail & Related papers (2023-01-23T13:34:01Z) - Deep Single Image Deraining using An Asymetric Cycle Generative and
Adversarial Framework [16.59494337699748]
We propose a novel Asymetric Cycle Generative and Adrial framework (ACGF) for single image deraining.
ACGF trains on both synthetic and real rainy images while simultaneously capturing both rain streaks and fog features.
Experiments on benchmark rain-fog and rain datasets show that ACGF outperforms state-of-the-art deraining methods.
arXiv Detail & Related papers (2022-02-19T16:14:10Z) - UnfairGAN: An Enhanced Generative Adversarial Network for Raindrop
Removal from A Single Image [8.642603456626391]
UnfairGAN is an enhanced generative adversarial network that can utilize prior high-level information, such as edges and rain estimation, to boost deraining performance.
We show that our proposed method is superior to other state-of-the-art approaches of deraining raindrops regarding quantitative metrics and visual quality.
arXiv Detail & Related papers (2021-10-11T18:02:43Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
We specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet)
RCDNet embeds the intrinsic priors of rain streaks and has clear interpretability.
By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted.
arXiv Detail & Related papers (2021-07-14T16:08:11Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
This paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer.
Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks.
Various prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them.
arXiv Detail & Related papers (2021-03-14T14:28:57Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
This study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks.
arXiv Detail & Related papers (2020-05-19T05:52:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.