SPGP: Structure Prototype Guided Graph Pooling
- URL: http://arxiv.org/abs/2209.07817v1
- Date: Fri, 16 Sep 2022 09:33:09 GMT
- Title: SPGP: Structure Prototype Guided Graph Pooling
- Authors: Sangseon Lee, Dohoon Lee, Yinhua Piao, Sun Kim
- Abstract summary: We propose Structure Prototype Guided Pooling (SPGP) for learning graph-level representations.
SPGP formulates graph structures as learnable prototype vectors and computes the affinity between nodes and prototype vectors.
Our experimental results show that SPGP outperforms state-of-the-art graph pooling methods on graph classification benchmark datasets.
- Score: 1.3764085113103217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While graph neural networks (GNNs) have been successful for node
classification tasks and link prediction tasks in graph, learning graph-level
representations still remains a challenge. For the graph-level representation,
it is important to learn both representation of neighboring nodes, i.e.,
aggregation, and graph structural information. A number of graph pooling
methods have been developed for this goal. However, most of the existing
pooling methods utilize k-hop neighborhood without considering explicit
structural information in a graph. In this paper, we propose Structure
Prototype Guided Pooling (SPGP) that utilizes prior graph structures to
overcome the limitation. SPGP formulates graph structures as learnable
prototype vectors and computes the affinity between nodes and prototype
vectors. This leads to a novel node scoring scheme that prioritizes informative
nodes while encapsulating the useful structures of the graph. Our experimental
results show that SPGP outperforms state-of-the-art graph pooling methods on
graph classification benchmark datasets in both accuracy and scalability.
Related papers
- SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Graph Parsing Networks [64.5041886737007]
We propose an efficient graph parsing algorithm to infer the pooling structure, which then drives graph pooling.
The resulting Graph Parsing Network (GPN) adaptively learns personalized pooling structure for each individual graph.
arXiv Detail & Related papers (2024-02-22T09:08:36Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
We propose a new interpretable graph pooling framework - CommPOOL.
It can capture and preserve the hierarchical community structure of graphs in the graph representation learning process.
CommPOOL is a general and flexible framework for hierarchical graph representation learning.
arXiv Detail & Related papers (2020-12-10T21:14:18Z) - Second-Order Pooling for Graph Neural Networks [62.13156203025818]
We propose to use second-order pooling as graph pooling, which naturally solves the above challenges.
We show that direct use of second-order pooling with graph neural networks leads to practical problems.
We propose two novel global graph pooling methods based on second-order pooling; namely, bilinear mapping and attentional second-order pooling.
arXiv Detail & Related papers (2020-07-20T20:52:36Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.