Expanding continual few-shot learning benchmarks to include recognition of specific instances
- URL: http://arxiv.org/abs/2209.07863v4
- Date: Tue, 9 Jul 2024 10:41:17 GMT
- Title: Expanding continual few-shot learning benchmarks to include recognition of specific instances
- Authors: Gideon Kowadlo, Abdelrahman Ahmed, Amir Mayan, David Rawlinson,
- Abstract summary: Continual learning and few-shot learning are important frontiers in progress toward broader Machine Learning (ML) capabilities.
One of the first examples to do so was the Continual few-shot Learning framework of Antoniou et al. arXiv:2004.11967.
We extend CFSL in two ways that capture a broader range of challenges, important for intelligent agent behaviour in real-world conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning and few-shot learning are important frontiers in progress toward broader Machine Learning (ML) capabilities. Recently, there has been intense interest in combining both. One of the first examples to do so was the Continual few-shot Learning (CFSL) framework of Antoniou et al. arXiv:2004.11967. In this study, we extend CFSL in two ways that capture a broader range of challenges, important for intelligent agent behaviour in real-world conditions. First, we increased the number of classes by an order of magnitude, making the results more comparable to standard continual learning experiments. Second, we introduced an 'instance test' which requires recognition of specific instances of classes -- a capability of animal cognition that is usually neglected in ML. For an initial exploration of ML model performance under these conditions, we selected representative baseline models from the original CFSL work and added a model variant with replay. As expected, learning more classes is more difficult than the original CFSL experiments, and interestingly, the way in which image instances and classes are presented affects classification performance. Surprisingly, accuracy in the baseline instance test is comparable to other classification tasks, but poor given significant occlusion and noise. The use of replay for consolidation substantially improves performance for both types of tasks, but particularly for the instance test.
Related papers
- Queryable Prototype Multiple Instance Learning with Vision-Language Models for Incremental Whole Slide Image Classification [10.667645628712542]
This paper proposes the first Vision-Language-based framework with Queryable Prototype Multiple Instance Learning (QPMIL-VL) specially designed for incremental WSI classification.
experiments on four TCGA datasets demonstrate that our QPMIL-VL framework is effective for incremental WSI classification.
arXiv Detail & Related papers (2024-10-14T14:49:34Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Demystifying the Base and Novel Performances for Few-shot
Class-incremental Learning [15.762281194023462]
Few-shot class-incremental learning (FSCIL) has addressed challenging real-world scenarios where unseen novel classes continually arrive with few samples.
It is required to develop a model that recognizes the novel classes without forgetting prior knowledge.
It is shown that our straightforward method has comparable performance with the sophisticated state-of-the-art algorithms.
arXiv Detail & Related papers (2022-06-18T00:39:47Z) - Sylph: A Hypernetwork Framework for Incremental Few-shot Object
Detection [8.492340530784697]
We show that finetune-free iFSD can be highly effective when a large number of base categories with abundant data are available for meta-training.
We benchmark our model on both COCO and LVIS, reporting as high as $17%$ AP on the long-tail rare classes on LVIS.
arXiv Detail & Related papers (2022-03-25T20:39:00Z) - Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning [141.35105358670316]
We study the difference between a na"ively-trained initial-phase model and the oracle model.
We propose Class-wise Decorrelation (CwD) that effectively regularizes representations of each class to scatter more uniformly.
Our CwD is simple to implement and easy to plug into existing methods.
arXiv Detail & Related papers (2021-12-09T07:20:32Z) - Few Shot Activity Recognition Using Variational Inference [9.371378627575883]
We propose a novel variational inference based architectural framework (HF-AR) for few shot activity recognition.
Our framework leverages volume-preserving Householder Flow to learn a flexible posterior distribution of the novel classes.
This results in better performance as compared to state-of-the-art few shot approaches for human activity recognition.
arXiv Detail & Related papers (2021-08-20T03:57:58Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Fine-grained Angular Contrastive Learning with Coarse Labels [72.80126601230447]
We introduce a novel 'Angular normalization' module that allows to effectively combine supervised and self-supervised contrastive pre-training.
This work will help to pave the way for future research on this new, challenging, and very practical topic of C2FS classification.
arXiv Detail & Related papers (2020-12-07T08:09:02Z) - Unsupervised One-shot Learning of Both Specific Instances and
Generalised Classes with a Hippocampal Architecture [0.0]
Distinguishing specific instances is necessary for many real-world tasks, such as remembering which cup belongs to you.
Generalisation within classes conflicts with the ability to separate instances of classes, making it difficult to achieve both capabilities within a single architecture.
We propose an extension to the standard Omniglot classification-generalisation framework that tests the ability to distinguish specific instances after one exposure.
arXiv Detail & Related papers (2020-10-30T00:10:23Z) - Overcoming Classifier Imbalance for Long-tail Object Detection with
Balanced Group Softmax [88.11979569564427]
We provide the first systematic analysis on the underperformance of state-of-the-art models in front of long-tail distribution.
We propose a novel balanced group softmax (BAGS) module for balancing the classifiers within the detection frameworks through group-wise training.
Extensive experiments on the very recent long-tail large vocabulary object recognition benchmark LVIS show that our proposed BAGS significantly improves the performance of detectors.
arXiv Detail & Related papers (2020-06-18T10:24:26Z) - Few-Shot Learning as Domain Adaptation: Algorithm and Analysis [120.75020271706978]
Few-shot learning uses prior knowledge learned from the seen classes to recognize the unseen classes.
This class-difference-caused distribution shift can be considered as a special case of domain shift.
We propose a prototypical domain adaptation network with attention (DAPNA) to explicitly tackle such a domain shift problem in a meta-learning framework.
arXiv Detail & Related papers (2020-02-06T01:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.