Queryable Prototype Multiple Instance Learning with Vision-Language Models for Incremental Whole Slide Image Classification
- URL: http://arxiv.org/abs/2410.10573v1
- Date: Mon, 14 Oct 2024 14:49:34 GMT
- Title: Queryable Prototype Multiple Instance Learning with Vision-Language Models for Incremental Whole Slide Image Classification
- Authors: Jiaxiang Gou, Luping Ji, Pei Liu, Mao Ye,
- Abstract summary: This paper proposes the first Vision-Language-based framework with Queryable Prototype Multiple Instance Learning (QPMIL-VL) specially designed for incremental WSI classification.
experiments on four TCGA datasets demonstrate that our QPMIL-VL framework is effective for incremental WSI classification.
- Score: 10.667645628712542
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Whole Slide Image (WSI) classification has very significant applications in clinical pathology, e.g., tumor identification and cancer diagnosis. Currently, most research attention is focused on Multiple Instance Learning (MIL) using static datasets. One of the most obvious weaknesses of these methods is that they cannot efficiently preserve and utilize previously learned knowledge. With any new data arriving, classification models are required to be re-trained on both previous and current new data. To overcome this shortcoming and break through traditional vision modality, this paper proposes the first Vision-Language-based framework with Queryable Prototype Multiple Instance Learning (QPMIL-VL) specially designed for incremental WSI classification. This framework mainly consists of two information processing branches. One is for generating the bag-level feature by prototype-guided aggregating on the instance features. While the other is for enhancing the class feature through class ensemble, tunable vector and class similarity loss. The experiments on four TCGA datasets demonstrate that our QPMIL-VL framework is effective for incremental WSI classification and often significantly outperforms other compared methods, achieving state-of-the-art (SOTA) performance.
Related papers
- Verbalized Representation Learning for Interpretable Few-Shot Generalization [130.8173035901391]
Verbalized Representation Learning (VRL) is a novel approach for automatically extracting human-interpretable features for object recognition.
Our method captures inter-class differences and intra-class commonalities in the form of natural language.
VRL achieves a 24% absolute improvement over prior state-of-the-art methods.
arXiv Detail & Related papers (2024-11-27T01:55:08Z) - Rethinking Pre-Trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification [2.6703221234079946]
Multiple instance learning (MIL) has become a preferred method for gigapixel whole slide image (WSI) classification without requiring patch-level annotations.
This study systematically evaluating MIL feature extractors across three dimensions: pre-training dataset, backbone model, and pre-training method.
arXiv Detail & Related papers (2024-08-02T10:34:23Z) - Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic Interaction [17.989559761931435]
We propose a novel "Fine-grained Visual-Semantic Interaction" framework for WSI classification.
It is designed to enhance the model's generalizability by leveraging the interaction between localized visual patterns and fine-grained pathological semantics.
Our method demonstrates robust generalizability and strong transferability, dominantly outperforming the counterparts on the TCGA Lung Cancer dataset.
arXiv Detail & Related papers (2024-02-29T16:29:53Z) - TPMIL: Trainable Prototype Enhanced Multiple Instance Learning for Whole
Slide Image Classification [13.195971707693365]
We develop a Trainable Prototype enhanced deep MIL framework for weakly supervised WSI classification.
Our method is able to reveal the correlations between different tumor subtypes through distances between corresponding trained prototypes.
We test our method on two WSI datasets and it achieves a new SOTA.
arXiv Detail & Related papers (2023-05-01T07:39:19Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain,
Active and Continual Few-Shot Learning [41.07029317930986]
We propose a variance-sensitive class of models that operates in a low-label regime.
The first method, Simple CNAPS, employs a hierarchically regularized Mahalanobis-distance based classifier.
We further extend this approach to a transductive learning setting, proposing Transductive CNAPS.
arXiv Detail & Related papers (2022-01-13T18:59:02Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
We introduce a new setting of Novel Class Discovery in Semantic (NCDSS)
It aims at segmenting unlabeled images containing new classes given prior knowledge from a labeled set of disjoint classes.
In NCDSS, we need to distinguish the objects and background, and to handle the existence of multiple classes within an image.
We propose the Entropy-based Uncertainty Modeling and Self-training (EUMS) framework to overcome noisy pseudo-labels.
arXiv Detail & Related papers (2021-12-03T13:31:59Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.