TwistSLAM++: Fusing multiple modalities for accurate dynamic semantic
SLAM
- URL: http://arxiv.org/abs/2209.07888v2
- Date: Wed, 22 Mar 2023 20:20:48 GMT
- Title: TwistSLAM++: Fusing multiple modalities for accurate dynamic semantic
SLAM
- Authors: Mathieu Gonzalez, Eric Marchand, Amine Kacete and J\'er\^ome Royan
- Abstract summary: TwistSLAM++ is a semantic, dynamic, SLAM system that fuses stereo images and LiDAR information.
We show on classical benchmarks that this fusion approach based on multimodal information improves the accuracy of object tracking.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most classical SLAM systems rely on the static scene assumption, which limits
their applicability in real world scenarios. Recent SLAM frameworks have been
proposed to simultaneously track the camera and moving objects. However they
are often unable to estimate the canonical pose of the objects and exhibit a
low object tracking accuracy. To solve this problem we propose TwistSLAM++, a
semantic, dynamic, SLAM system that fuses stereo images and LiDAR information.
Using semantic information, we track potentially moving objects and associate
them to 3D object detections in LiDAR scans to obtain their pose and size.
Then, we perform registration on consecutive object scans to refine object pose
estimation. Finally, object scans are used to estimate the shape of the object
and constrain map points to lie on the estimated surface within the BA. We show
on classical benchmarks that this fusion approach based on multimodal
information improves the accuracy of object tracking.
Related papers
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - NeuSE: Neural SE(3)-Equivariant Embedding for Consistent Spatial
Understanding with Objects [53.111397800478294]
We present NeuSE, a novel Neural SE(3)-Equivariant Embedding for objects.
NeuSE serves as a compact point cloud surrogate for complete object models.
Our proposed SLAM paradigm, using NeuSE for object shape and pose characterization, can operate independently or in conjunction with typical SLAM systems.
arXiv Detail & Related papers (2023-03-13T17:30:43Z) - Using Detection, Tracking and Prediction in Visual SLAM to Achieve
Real-time Semantic Mapping of Dynamic Scenarios [70.70421502784598]
RDS-SLAM can build semantic maps at object level for dynamic scenarios in real time using only one commonly used Intel Core i7 CPU.
We evaluate RDS-SLAM in TUM RGB-D dataset, and experimental results show that RDS-SLAM can run with 30.3 ms per frame in dynamic scenarios.
arXiv Detail & Related papers (2022-10-10T11:03:32Z) - Visual-Inertial Multi-Instance Dynamic SLAM with Object-level
Relocalisation [14.302118093865849]
We present a tightly-coupled visual-inertial object-level multi-instance dynamic SLAM system.
It can robustly optimise for the camera pose, velocity, IMU biases and build a dense 3D reconstruction object-level map of the environment.
arXiv Detail & Related papers (2022-08-08T17:13:24Z) - TwistSLAM: Constrained SLAM in Dynamic Environment [0.0]
We present TwistSLAM, a semantic, dynamic, stereo SLAM system that can track dynamic objects in the scene.
Our algorithm creates clusters of points according to their semantic class.
It uses the static parts of the environment to robustly localize the camera and tracks the remaining objects.
arXiv Detail & Related papers (2022-02-24T22:08:45Z) - DL-SLOT: Dynamic Lidar SLAM and Object Tracking Based On Graph
Optimization [2.889268075288957]
Ego-pose estimation and dynamic object tracking are two key issues in an autonomous driving system.
In this paper, DL-SLOT, a dynamic Lidar SLAM and object tracking method is proposed.
We perform SLAM and object tracking simultaneously in this framework, which significantly improves the robustness and accuracy of SLAM in highly dynamic road scenarios.
arXiv Detail & Related papers (2022-02-23T11:22:43Z) - DSP-SLAM: Object Oriented SLAM with Deep Shape Priors [16.867669408751507]
We propose an object-oriented SLAM system that builds a rich and accurate joint map of dense 3D models for foreground objects.
DSP-SLAM takes as input the 3D point cloud reconstructed by a feature-based SLAM system.
Our evaluation shows improvements in object pose and shape reconstruction with respect to recent deep prior-based reconstruction methods.
arXiv Detail & Related papers (2021-08-21T10:00:12Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOT combines instance segmentation and multi-view geometry to generate masks for dynamic objects.
To determine which objects are actually moving, DOT segments first instances of potentially dynamic objects and then, with the estimated camera motion, tracks such objects by minimizing the photometric reprojection error.
Our results show that our approach improves significantly the accuracy and robustness of ORB-SLAM 2, especially in highly dynamic scenes.
arXiv Detail & Related papers (2020-09-30T18:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.