論文の概要: Malicious Source Code Detection Using Transformer
- arxiv url: http://arxiv.org/abs/2209.07957v1
- Date: Fri, 16 Sep 2022 14:16:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 13:43:11.259459
- Title: Malicious Source Code Detection Using Transformer
- Title(参考訳): Transformer を用いた悪意のあるソースコード検出
- Authors: Chen Tsfaty, Michael Fire
- Abstract要約: 本稿では,トランスフォーマー(MSDT)アルゴリズムを用いたMalicious Source code Detectionを提案する。
MSDTは、ソースコードパッケージへの実世界のコードインジェクションケースを検出するディープラーニング手法に基づく、新しい静的解析である。
我々のアルゴリズムは、悪意のあるコードで注入された関数を精度@kで最大0.909の精度で検出できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Open source code is considered a common practice in modern software
development. However, reusing other code allows bad actors to access a wide
developers' community, hence the products that rely on it. Those attacks are
categorized as supply chain attacks. Recent years saw a growing number of
supply chain attacks that leverage open source during software development,
relaying the download and installation procedures, whether automatic or manual.
Over the years, many approaches have been invented for detecting vulnerable
packages. However, it is uncommon to detect malicious code within packages.
Those detection approaches can be broadly categorized as analyzes that use
(dynamic) and do not use (static) code execution. Here, we introduce Malicious
Source code Detection using Transformers (MSDT) algorithm. MSDT is a novel
static analysis based on a deep learning method that detects real-world code
injection cases to source code packages. In this study, we used MSDT and a
dataset with over 600,000 different functions to embed various functions and
applied a clustering algorithm to the resulting vectors, detecting the
malicious functions by detecting the outliers. We evaluated MSDT's performance
by conducting extensive experiments and demonstrated that our algorithm is
capable of detecting functions that were injected with malicious code with
precision@k values of up to 0.909.
- Abstract(参考訳): オープンソースコードは、現代のソフトウェア開発において一般的なプラクティスであると考えられている。
しかし、他のコードを再使用することで、悪いアクターは幅広い開発者のコミュニティにアクセスでき、従って、それに依存する製品も利用できる。
これらの攻撃はサプライチェーン攻撃に分類される。
近年、ソフトウェア開発中にオープンソースを活用するサプライチェーン攻撃が増加し、自動でも手動でも、ダウンロードとインストールの手順を中継している。
長年にわたり、脆弱なパッケージを検出するための多くのアプローチが発明されてきた。
しかし、パッケージ内で悪意のあるコードを検出することは珍しくない。
これらの検出アプローチは、(動的)を使用し、(静的)コード実行を使わない分析として、広く分類することができる。
本稿では,トランスフォーマー (MSDT) アルゴリズムを用いたMalicious Source code Detectionを提案する。
MSDTは、ソースコードパッケージへの実世界のコードインジェクションケースを検出するディープラーニング手法に基づく、新しい静的解析である。
本研究では,MSDTと600,000以上の関数を持つデータセットを用いて様々な関数を埋め込み,結果ベクトルにクラスタリングアルゴリズムを適用し,異常な関数を検出する。
我々は,MSDTの性能を広範囲な実験により評価し,このアルゴリズムが悪意のあるコードで注入された関数を最大0.909の精度で検出できることを実証した。
関連論文リスト
- RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCodeはリスクの高いコード実行と生成のためのベンチマークである。
RedCode-Execは、危険なコード実行につながる可能性のある、挑戦的なプロンプトを提供する。
RedCode-Genは160のプロンプトに関数シグネチャとドキュメントを入力として提供し、コードエージェントが命令に従うかどうかを評価する。
論文 参考訳(メタデータ) (2024-11-12T13:30:06Z) - FV8: A Forced Execution JavaScript Engine for Detecting Evasive Techniques [53.288368877654705]
FV8はJavaScriptコードの回避テクニックを特定するために設計された修正V8 JavaScriptエンジンである。
動的コードを条件付きで注入するAPI上でのコード実行を選択的に実施する。
1,443のnpmパッケージと、少なくとも1つのタイプのエスケープを含む164の(82%)拡張を識別する。
論文 参考訳(メタデータ) (2024-05-21T19:54:19Z) - FoC: Figure out the Cryptographic Functions in Stripped Binaries with LLMs [54.27040631527217]
削除されたバイナリの暗号関数を抽出するFoCと呼ばれる新しいフレームワークを提案する。
まず、自然言語における暗号関数のセマンティクスを要約するために、バイナリ大言語モデル(FoC-BinLLM)を構築した。
次に、FoC-BinLLM上にバイナリコード類似モデル(FoC-Sim)を構築し、変更に敏感な表現を作成し、データベース内の未知の暗号関数の類似実装を検索する。
論文 参考訳(メタデータ) (2024-03-27T09:45:33Z) - Patch2QL: Discover Cognate Defects in Open Source Software Supply Chain
With Auto-generated Static Analysis Rules [1.9591497166224197]
本稿では,SASTルールの自動生成によるOSSのコグネート欠陥の検出手法を提案する。
具体的には、プリパッチバージョンとポストパッチバージョンから重要な構文と意味情報を抽出する。
我々はPatch2QLというプロトタイプツールを実装し、それをC/C++の基本OSSに適用した。
論文 参考訳(メタデータ) (2024-01-23T02:23:11Z) - Source Code Clone Detection Using Unsupervised Similarity Measures [0.0]
本研究は,ソースコードのクローン検出のための教師なし類似度尺度の比較分析を行う。
目標は、現在の最先端技術、その強み、弱点を概観することである。
論文 参考訳(メタデータ) (2024-01-18T10:56:27Z) - Zero-Shot Detection of Machine-Generated Codes [83.0342513054389]
本研究は,LLMの生成したコードを検出するためのトレーニング不要な手法を提案する。
既存のトレーニングベースまたはゼロショットテキスト検出装置は、コード検出に効果がないことがわかった。
本手法は,リビジョン攻撃に対する堅牢性を示し,Javaコードによく適応する。
論文 参考訳(メタデータ) (2023-10-08T10:08:21Z) - VMCDL: Vulnerability Mining Based on Cascaded Deep Learning Under Source
Control Flow [2.561778620560749]
本稿では,主にSARDデータセットのc/c++ソースコードデータを用いて,CWE476,CWE469,CWE516,CWE570の脆弱性型のソースコードを処理する。
本稿では,ソースコード制御フローに基づく新しいカスケード深層学習モデルVMCDLを提案し,脆弱性を効果的に検出する。
論文 参考訳(メタデータ) (2023-03-13T13:58:39Z) - A Hierarchical Deep Neural Network for Detecting Lines of Codes with
Vulnerabilities [6.09170287691728]
ソースコードの意図しない欠陥によって引き起こされるソフトウェア脆弱性は、サイバー攻撃の根本原因である。
本稿では,自然言語処理で使用されている手法に基づいて,LLVM IR表現から脆弱性を検出するためのディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-15T21:21:27Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
サンプルプログラムの正しさを予測できる故障認識型ニューラルネットワークローダを提案する。
我々のフォールト・アウェア・ローダは、様々なコード生成モデルのpass@1精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-06-04T22:01:05Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。