OysterNet: Enhanced Oyster Detection Using Simulation
- URL: http://arxiv.org/abs/2209.08176v1
- Date: Fri, 16 Sep 2022 21:35:45 GMT
- Title: OysterNet: Enhanced Oyster Detection Using Simulation
- Authors: Xiaomin Lin, Nitin J. Sanket, Nare Karapetyan, Yiannis Aloimonos
- Abstract summary: Oysters play a pivotal role in the bay living ecosystem and are considered the living filters for the ocean.
We present a novel method to mathematically model oysters and render images of oysters in simulation to boost the detection performance with minimal real data.
- Score: 12.282807381883542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Oysters play a pivotal role in the bay living ecosystem and are considered
the living filters for the ocean. In recent years, oyster reefs have undergone
major devastation caused by commercial over-harvesting, requiring preservation
to maintain ecological balance. The foundation of this preservation is to
estimate the oyster density which requires accurate oyster detection. However,
systems for accurate oyster detection require large datasets obtaining which is
an expensive and labor-intensive task in underwater environments. To this end,
we present a novel method to mathematically model oysters and render images of
oysters in simulation to boost the detection performance with minimal real
data. Utilizing our synthetic data along with real data for oyster detection,
we obtain up to 35.1% boost in performance as compared to using only real data
with our OysterNet network. We also improve the state-of-the-art by 12.7%. This
shows that using underlying geometrical properties of objects can help to
enhance recognition task accuracy on limited datasets successfully and we hope
more researchers adopt such a strategy for hard-to-obtain datasets.
Related papers
- ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics [14.935296890629795]
Oysters are a vital keystone species in coastal ecosystems, providing significant economic, environmental, and cultural benefits.
Current monitoring strategies often rely on destructive methods.
We propose a novel pipeline using stable diffusion to augment a collected real dataset with realistic synthetic data.
arXiv Detail & Related papers (2024-09-11T04:31:09Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Whale Detection Enhancement through Synthetic Satellite Images [13.842008598751445]
We show that we can achieve a 15% performance boost on whale detection compared to using the real data alone for training.
We open source the code of the simulation platform SeaDroneSim2 and the dataset generated through it.
arXiv Detail & Related papers (2023-08-15T13:35:29Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Underwater Acoustic Target Recognition based on Smoothness-inducing Regularization and Spectrogram-based Data Augmentation [21.327653766608805]
Insufficient data can hinder the ability of recognition systems to support complex modeling.
We propose two strategies to enhance the generalization ability of models in the case of limited data.
arXiv Detail & Related papers (2023-06-12T08:26:47Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
We propose an efficient computer vision- and deep learning-based method for the detection of biological behaviours in videos.
TempNet uses an encoder bridge and residual blocks to maintain model performance with a two-staged, spatial, then temporal, encoder.
We demonstrate its application to the detection of sablefish (Anoplopoma fimbria) startle events.
arXiv Detail & Related papers (2022-11-17T23:55:12Z) - A Real-time Edge-AI System for Reef Surveys [6.070670469403929]
Crown-of-Thorn Starfish (COTS) outbreaks are a major cause of coral loss on the Great Barrier Reef.
We present a comprehensive real-time machine learning-based underwater data collection and curation system on edge devices for COTS monitoring.
arXiv Detail & Related papers (2022-08-01T04:06:14Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Complex data labeling with deep learning methods: Lessons from fisheries
acoustics [0.0]
This paper focuses on a case study where the ground truth labels are non-obvious: echograms labeling.
We demonstrate that convolutional neural networks trained with non-stationary datasets can be used to stress parts of a new dataset needing human expert correction.
arXiv Detail & Related papers (2020-10-21T13:49:34Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.